Polyphenols and Their Components in Experimental Allergic Asthma

  • M. Joskova
  • V. Sadlonova
  • G. Nosalova
  • E. Novakova
  • S. Franova
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 756)


The aim of the study was to investigate the potential anti-inflammatory effects in ­experimental allergic asthma of natural polyphenolic compounds or their single major components. The experiment was performed after 21-days sensitization of guinea pigs with ovalbumin suspension. Changes in airway reactivity after the long-term treatment with the polyphenolic compounds Provinol and Flavin-7 and their single major components quercetin and resveratrol during were assessed using a whole body plethysmography. Reactivity of tracheal smooth muscle was studied in vitro in response to cumulative doses of the bronchoconstrictive mediators histamine and acetylcholine. Furthermore, concentrations of the inflammatory cytokines IL-4 and IL-5 were measured in bronchoalveolar lavage fluid. The results demonstrate significant anti-inflammatory effects of Provinol and Flavin-7 exerted in the airways. In contrast, chronic treatment with quercetin and resveratrol, single components of the two polyphenols, did not show such activity. We conclude that polyphenolic compounds are more effective in the anti-inflammatory effects in the airways than their separate components.


Allergic inflammation Airway hyperreactivity Asthma Polyphenols Quercetin Resveratrol Inflammatory cytokines 



This work was supported by the projects ‘Center of Experimental and Clinical Respirology II’ and ‘Support of human resources development using the most modern methods and forms of education at JLF UK in Martin’ co-financed from EU sources and the European Social Fund and by VEGA grant 1/0020/11.

Conflicts of interest: The authors declare no conflicts of interest in relation to this article.


  1. Andriambeloson, E., Kleschyov, A. L., Muller, B., Beretz, A., Stoclet, J. C., & Andriantsitohaina, R. (1997). Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. British Journal of Pharmacology, 120(6), 1053–1058.PubMedCrossRefGoogle Scholar
  2. Brozmanova, M., Bartos, V., Plank, L., Plevkova, J., & Tatar, M. (2007). Dietary intake of flavonoids and hyperoxia-induced oxidative stress related cough in guinea pigs. Bratislavské Lekárske Listy, 108(12), 489–494.PubMedGoogle Scholar
  3. Cohn, L., Homer, R. J., Marinov, A., Rankin, J., & Bottomly, K. (1997). Induction of airway mucus production by T helper 2 (Th2) cells: A critical role for IL-4 in cell recruitment but not mucus production. The Journal of Experimental Medicine, 186(10), 1737–1747.PubMedCrossRefGoogle Scholar
  4. De Boer, V. C., Dihal, A. A., van der Woude, H., Arts, I. C., Wolffram, S., Alink, G. M., Rietjens, I. M., Keijer, J., & Hollman, P. C. (2005). Tissue distribution of quercetin in rats and pigs. Journal of Nutrition, 135(7), 1718–1725.PubMedGoogle Scholar
  5. El-Sayed, N. S., & Rizk, Sh. M. (2009). The protective effect of quercetin, green tea or malt extracts against experimentally-induced lung fibrosis in rats. African Journal of Pharmacy and Pharmacology, 3(5), 191–201.Google Scholar
  6. Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., Baker, J., & Kerr, D. J. (1996). Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2(4), 659–668.PubMedGoogle Scholar
  7. Fitzpatrick, D., Hirschfield, S. L., & Coffey, R. G. (1993). Endothelium-dependent relaxing activity of wine and other grape products. American Journal of Physiology, 265, 774–778.Google Scholar
  8. Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445–454.PubMedCrossRefGoogle Scholar
  9. Gilani, A. H., Khan, A. U., Ghayur, M. N., Ali, S. F., & Herzig, J. W. (2006). Antispasmodic effects of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+- channel activation. Basic & Clinical Pharmacology & Toxicology, 99(5), 365–373.CrossRefGoogle Scholar
  10. Hurst, S. M., McGhie, T. K., Cooney, J. M., Jensen, D. J., Gould, E. M., Lyall, K. A., & Hurst, R. D. (2010). Blackcurrant proanthocyanidins augment IFN-γ induced suppression of IL-4 stimulated CCL26 secretion in alveolar epithelial cells. Molecular Nutrition & Food Research, 54, 159–170.CrossRefGoogle Scholar
  11. Iademarco, M. F., Barks, J. L., & Dean, D. C. (1995). Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-α in cultured endothelial cells. Journal of Clinical Investigation, 95(1), 264–271.PubMedCrossRefGoogle Scholar
  12. Iwamura, Ch, Shinoda, K., Yoshimura, M., Watanabe, Y., Obata, A., & Nakayama, T. (2010). Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells. Allergology International, 59(1), 67–73.PubMedCrossRefGoogle Scholar
  13. Joskova, M., Franova, S., Nosalova, G., Pechanova, O., Prisenznakova, L., & Sutovska, M. (2009). A beneficial influence of provinol on the reduction of allergen induced hyperreactivity in guinea pigs. Bratislavské Lekárske Listy, 110(8), 454–458.PubMedGoogle Scholar
  14. Jung, Ch. H., Lee, J. Y., Cho, C. H., & Kim, C. J. (2007). Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Archives of Pharmacal Research, 30(12), 1599–1607.PubMedCrossRefGoogle Scholar
  15. Kim, M. K., Park, K. S., Yeo, W. S., Choo, H., & Chong, Y. (2009). In vitro solubility, stability and permeability of novel quercetin-amino acid conjugates. Bioorganic & Medicinal Chemistry, 17(3), 1164–1171.CrossRefGoogle Scholar
  16. Kühnau, J. (1976). The flavonoids: A class of semi-essential food components: Their role in human nutrition. World Review of Nutrition and Dietetics, 24, 117–191.PubMedGoogle Scholar
  17. Lebman, D. A., & Coffman, R. L. (1988). Interleukin-4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. The Journal of Experimental Medicine, 168(3), 853–862.PubMedCrossRefGoogle Scholar
  18. Lee, M., Kim, S., Kwon, O. K., Oh, S. R., Lee, H. K., & Ahn, K. (2009). Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. International Immunopharmacology, 9(4), 418–424.PubMedCrossRefGoogle Scholar
  19. Moon, H., Choi, H. H., Lee, J. Y., Moon, H. J., Sim, S. S., & Kim, C. J. (2008). Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs. Archives of Pharmacal Research, 31(6), 771–778.PubMedCrossRefGoogle Scholar
  20. Nanua, S., Zick, S. M., Andrade, J. E., Sajjan, U. S., Burgess, J. R., Lukacs, N. W., & Hershenson, M. B. (2006). Quercetin blocks airway epithelial cell chemokine expression. American Journal of Respiratory Cell and Molecular Biology, 35(5), 602–610.PubMedCrossRefGoogle Scholar
  21. Park, S. J., Shin, W. H., Seo, J. W., & Kim, E. J. (2007). Anthocyanins inhibit airway inflammation and hyperresponsiveness in a murine asthma model. Food and Chemical Toxicology, 45(8), 1459–1467.PubMedCrossRefGoogle Scholar
  22. Park, H. J., Lee, C. M., Jung, I. D., Lee, J. S., Jeong, Y. I., Chang, J. H., Chun, S. H., Kim, M. J., Choi, I. W., Ahn, S. C., Shin, Y. K., Yeom, S. R., & Park, Y. M. (2009). Quercetin regulates Th1/Th2 balance in a murine model of asthma. International Immunopharmacology, 9(3), 261–267.PubMedCrossRefGoogle Scholar
  23. Rogerio, A. P., Dora, C. L., Andrade, E. L., Chaves, J. S., Silva, L. F., Lemos-Senna, E., & Calixto, J. B. (2010). Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacological Research, 61(4), 288–297.PubMedCrossRefGoogle Scholar
  24. Shi, H. Z., Xiao, C. Q., Zhong, D., Qin, S. M., Liu, Y., Liang, G. R., Xu, H., Chen, Y. Q., Long, X. M., & Xie, Z. F. (1998). Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. American Journal of Respiratory and Critical Care Medicine, 157(1), 204–209.PubMedGoogle Scholar
  25. Szentmiklósi, A. J. (2003). Study on cardiovascular and bronchial effects of Flavin-7 in isolated tissue. Internal Issue of Crystal Institute Ltd., pp. 1–79.Google Scholar
  26. Temann, U. A., Geba, G. P., Rankin, J. A., & Flavell, R. A. (1998). Expression of interleukin-9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. The Journal of Experimental Medicine, 188(7), 1307–1320.PubMedCrossRefGoogle Scholar
  27. Van der Pouw Kraan, T. C., Van der Zee, J. S., Boeije, L. C., De Groot, E. R., Stapel, S. O., & Aarden, L. A. (1998). The role of IL-13 in IgE synthesis by allergic asthma patients. Clinical and Experimental Immunology, 111(1), 129–135.PubMedCrossRefGoogle Scholar
  28. Yang, N. Ch., Lee, C. H., & Song, T. Y. (2010). Evaluation of resveratrol oxidation in vitro and the crucial role of bicarbonate ions. Bioscience, Biotechnology, and Biochemistry, 74(1), 63–68.PubMedCrossRefGoogle Scholar
  29. Zenebe, W., Pechánová, O., & Andriantsitohaina, R. (2003). Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiological Research, 52(4), 425–432.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Joskova
    • 1
  • V. Sadlonova
    • 1
  • G. Nosalova
    • 1
  • E. Novakova
    • 2
  • S. Franova
    • 1
  1. 1.Department of PharmacologyJessenius Faculty of Medicine, Comenius UniversityMartinSlovakia
  2. 2.Department of Microbiology and ImmunologyJessenius Faculty of Medicine, Comenius UniversityMartinSlovakia

Personalised recommendations