Liposomes and Other Nanoparticles as Cancer Vaccines and Immunotherapeutics

  • Joseph G. AltinEmail author


The uptake, processing and presentation of antigen by antigen presenting cells (APCs) such as macrophages and dendritic cells (DCs) plays a crucial role in the development of vaccines and immunotherapies against infectious diseases and cancer. Liposomes are nanoparticles composed of lipids/phospholipids that can be produced to exhibit properties mimicking those seen in pathogens; thus empowering liposomes with an inherent adjuvant activity and an ability to induce both humoral and cell-mediated immune responses. In addition to their adjuvanticity, liposomes can deliver to APCs large amounts of antigen, and immunostimulatory factors; they can readily incorporate “danger” or DC maturation signals, and be surface-modified to promote their active targeting to specific receptors on cells. Liposomes can also encapsulate or form complexes (lipoplexes) with plasmid DNA and small interfering RNA, enabling targeting of these nucleic acids directly to APCs as a DNA vaccine or to enhance immune responses. Since liposomes can be readily manipulated, are biocompatible and biodegradable, and are efficacious with a good record of safety, they clearly exhibit the attributes of potent arsenals for manipulating immune function and for developing more effective cancer vaccines and immunotherapies.


Liposomes Nanoparticles Adjuvants Dendritic cells Antigen ­presenting cells Targeted delivery DNA vaccine Immunity 



This work was supported by Project Grants from the NHMRC of Australia (Number 316949) and from the ACT Cancer Society (App1028722). The author is grateful for the input of collaborators including Prof. Christopher R. Parish (JCSMR, ANU) and research students now Drs Thomas P. Herringson and Abdus Faham, for their contribution to the original research that led to the author’s work described in this review.


  1. Aaltonen LM, Wahlström T, Rihkanen H, Vaheri A (1998) A novel method to culture laryngeal human papillomavirus-positive epithelial cells produces papilloma-type cytology on collagen rafts. Eur J Cancer 34:1111–1116PubMedCrossRefGoogle Scholar
  2. Abtin A, Eckhart L, Mildner M, Gruber F, Schroder JM, Tschachler E (2008) Flagellin is principal inducer of the anti-microbial peptide S100A7c in human epidermal keratinocytes exposed to Escherichia. coli. FASEB J 22:2168–2176PubMedCrossRefGoogle Scholar
  3. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B (1999) DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 189:169–177PubMedCrossRefGoogle Scholar
  4. Akira S (2003) Mammalian Toll-like receptors. Curr Opin Immunol 15:5–11PubMedCrossRefGoogle Scholar
  5. Al-Deen FN, Ho J, Selomulya C, Ma C, Coppel R (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712PubMedCrossRefGoogle Scholar
  6. Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signalling (SOCS) proteins in the regulation of the immune response. Annu Rev Immunol 22:503–529PubMedCrossRefGoogle Scholar
  7. Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I (2004) Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 72:4127–4137PubMedCrossRefGoogle Scholar
  8. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36PubMedCrossRefGoogle Scholar
  9. Altin JG, Parish CR (2006) Liposomal vaccines – targeting the delivery of antigen. Methods 40:39–52PubMedCrossRefGoogle Scholar
  10. Altin JG, van Broekhoven CL, Parish CR (2004) Targeting dendritic cells with antigen-containing liposomes. Expert Opin Biol Ther 4:1735–1747PubMedCrossRefGoogle Scholar
  11. Alving CR (1990) Liposomes as carriers of antigen and adjuvant. J Immunol Methods 140:1–13CrossRefGoogle Scholar
  12. Ambrosch F, Wiedermann G, Jonas S, Althaus B, Finkle B, Gluck R, Herzog C (1997) Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine 15:1209–1213PubMedCrossRefGoogle Scholar
  13. Ardavin C, Amigorena S, Reis e Sousa C (2004) Dendritic cells: immunobiology and cancer immunotherapy. Immunity 20:17–23PubMedCrossRefGoogle Scholar
  14. Arie S (2011) Global HPV vaccination. BMJ 342:d1042PubMedCrossRefGoogle Scholar
  15. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Rev Immunol 10:787–796Google Scholar
  16. Bachmann MF, Beerli RR, Agnellini P, Wolint P, Schwarz K, Oxenius A (2006) Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. Eur J Immunol 36:842–854PubMedCrossRefGoogle Scholar
  17. Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M (2007) Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 25:4757–4766PubMedCrossRefGoogle Scholar
  18. Baldridge JR, Crane RT (1999) Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19:103–107PubMedCrossRefGoogle Scholar
  19. Bartenschlager R (2006) Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol 9:416–422PubMedCrossRefGoogle Scholar
  20. Bege N, Renette T, Jansch M, Reul R, Merkel O, Petersen H, Curdy C, Müller RH, Kissel T (2011) Biodegradable poly(ethylene carbonate) nanoparticles as a promising drug delivery system with “stealth” potential. Macromol Biosci 11:897–904PubMedCrossRefGoogle Scholar
  21. Bei R, Scardino A (2010) TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. J Biomed Biotech Article ID 102758:1–12Google Scholar
  22. Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7:1085–1101PubMedCrossRefGoogle Scholar
  23. Bousso P, Robey E (2003) T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4:579–585PubMedCrossRefGoogle Scholar
  24. Buonaguro FM, Tornesello ML, Buonaguro L (2009) Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 8:1379–1398PubMedCrossRefGoogle Scholar
  25. Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM (2011) Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 10:1569–1583PubMedCrossRefGoogle Scholar
  26. Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulieres D, Cormier Y, Ellis P, Price A, Sawhney R, Davis M, Mansi J, Smith C, Vergidis D, Ellis P, MacNeil M, Palmer M (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and stage IV non-small-cell lung cancer. J Clin Oncol 23:6674–6681PubMedCrossRefGoogle Scholar
  27. Butts C, Maksymiuk A, Goss G, Soulieres D, Marshall E, Cormier Y, Ellis PM, Price A, Sawhney R, Beier F, Falk M, Murray N (2011) Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol 137:1337–1342PubMedCrossRefGoogle Scholar
  28. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887PubMedCrossRefGoogle Scholar
  29. Cannon G, Weissman D (2002) RNA based vaccines. DNA Cell Biol 21:953–961PubMedCrossRefGoogle Scholar
  30. Chan K, Lee DJ, Schubert A, Tang CM, Crain B, Schoenberger SP, Corr M (2001) The roles of MHC class II, CD40, and B7 costimulation in CTL induction by plasmid DNA. J Immunol 166:3061–3066PubMedGoogle Scholar
  31. Chen J, Ni G, Liu XS (2011) Papillomavirus virus like particle-based therapeutic vaccine against human papillomavirus infection related diseases: immunological problems and future directions. Cell Immunol 269:5–9PubMedCrossRefGoogle Scholar
  32. Cheng WW, Allen TM (2010) The use of single chain Fv as targeting agents for immunoliposomes: an update on immunoliposomal drugs for cancer treatment. Expert Opin Drug Deliv 7:461–478PubMedCrossRefGoogle Scholar
  33. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nachen W, Song C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer. J Exp Med 205:2235–2249PubMedCrossRefGoogle Scholar
  34. Chhabra A, Chakraborty NG, Mukherji B (2008) Silencing of endogenous IL-10 in human dendritic cells leads to generation of improved CTL response against human melanoma epitope MART-127–35. Clin Immunol 126:251–259PubMedCrossRefGoogle Scholar
  35. Christ D, Famm K, Winter G (2007) Repertoires of aggregation-resistant human antibody domains. Protein Eng Des Sel 20:413–416PubMedCrossRefGoogle Scholar
  36. Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11PubMedCrossRefGoogle Scholar
  37. Christensen D, Korsholm KS, Andersen P, Agger EM (2011) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 10:513–521PubMedCrossRefGoogle Scholar
  38. Corrales-Rodriguez L, Blais N, Soulières D (2011) Emepepimut-S for non-small cell lung cancer. Expert Opin Biol Ther 11:1091–1097PubMedCrossRefGoogle Scholar
  39. Cox JC, Sjölander A, Barr IG (1998) ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev 32:247–271PubMedCrossRefGoogle Scholar
  40. Cruz LJ, Rueda F, Cordobilla B, Simon L, Hosta L, Albericio F, Domingo JC (2010) Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm 8:104–116PubMedCrossRefGoogle Scholar
  41. Curtis KK, Connolly MK, Northfelt DW (2008) Live, attenuated varicella zoster vaccination of an immunocompromised patient. J Gen Intern Med 23:648–649PubMedCrossRefGoogle Scholar
  42. Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110PubMedCrossRefGoogle Scholar
  43. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen YT, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2005) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 102:10697–10702Google Scholar
  44. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344PubMedCrossRefGoogle Scholar
  45. de Lima MC, Simoes S, Pires P, Gaspar R, Slepushkin V, Duzgunes N (1999) Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 16:103–109PubMedCrossRefGoogle Scholar
  46. Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 29:294–306PubMedCrossRefGoogle Scholar
  47. Di D, Teoh WY, Gooding JI, Selomulya C, Amal R (2010) Functionization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 20:1767–1777CrossRefGoogle Scholar
  48. Di Lorenzo G, Buonerba C, Kantoff PW (2011) Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 8:551–561PubMedCrossRefGoogle Scholar
  49. Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10:580–593PubMedCrossRefGoogle Scholar
  50. Eisenbarth SC (2008) Use and limitations of alum-based models of allergy. Clin Exp Allergy 38:1572–1575PubMedCrossRefGoogle Scholar
  51. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126PubMedCrossRefGoogle Scholar
  52. Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412PubMedCrossRefGoogle Scholar
  53. El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14PubMedCrossRefGoogle Scholar
  54. Eliasson DG, Helgeby A, Schon K, Nygren C, El-Bakkouri K, Fiers W, Saelens X, Lövgren KB, Nyström I, Lycke NY (2011) A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 29:3951–3961PubMedCrossRefGoogle Scholar
  55. Erikçi E, Gursel M, Gürsel I (2011) Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials 32:1715–1723PubMedCrossRefGoogle Scholar
  56. Espuelas S, Thumann C, Heurtault B, Schuber F, Frisch B (2008) Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug Chem 19:2385–2393PubMedCrossRefGoogle Scholar
  57. Faham A, Altin JG (2010) Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol 185:1744–1754PubMedCrossRefGoogle Scholar
  58. Faham A, Altin JG (2011) Ag-bearing liposomes engrafted with peptides that interact with CD11c/CD18 induce potent Ag-specific and antitumor immunity. Int J Cancer 129:1391–1403PubMedCrossRefGoogle Scholar
  59. Faham A, Bennett D, Altin JG (2009) Liposomal Ag engrafted with peptides of sequence derived from HMGB1 induce potent Ag-specific and anti-tumour immunity. Vaccine 27:5846–5854PubMedCrossRefGoogle Scholar
  60. Faham A, Herringson T, Parish C, Suhrbier A, Khromykh AA, Altin JG (2011) PDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects. Vaccine 29:6911–6919PubMedCrossRefGoogle Scholar
  61. Fehr T, Skrastina D, Pumpens P, Zinkernagel RM (1998) T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci USA 95:9477–9481PubMedCrossRefGoogle Scholar
  62. Ferlazzo C, Tsang ML, Moretta L, Melioi G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351PubMedCrossRefGoogle Scholar
  63. Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galan JE, Flavell RA, Alexopoulou L (2006) Involvement of toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103:12487–12492PubMedCrossRefGoogle Scholar
  64. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M (2004a) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154PubMedGoogle Scholar
  65. Fifis T, Mottram P, Bogdanoska V, Hanley J, Plebanski M (2004b) Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice. Vaccine 23:258–266PubMedCrossRefGoogle Scholar
  66. Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRefGoogle Scholar
  67. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGF&UF062. Nat Rev Immunol 10:554–567PubMedCrossRefGoogle Scholar
  68. Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S (2004) Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22:1903–1913PubMedCrossRefGoogle Scholar
  69. Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273PubMedCrossRefGoogle Scholar
  70. Fooks AR (2000) Development of oral vaccines for human use. Curr Opin Mol Ther 2:80–86PubMedGoogle Scholar
  71. Foster N, Hirst BH (2005) Exploiting receptor biology for oral vaccination with biodegradable particulates. Adv Drug Deliv Rev 57:431–450PubMedCrossRefGoogle Scholar
  72. Frazer IH, Levin MJ (2011) Paradigm shifting vaccines: prophylactic vaccines against latent varicella-zoster virus infection and against HPV-associated cancer. Curr Opin Virol 1:268–279PubMedCrossRefGoogle Scholar
  73. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189PubMedGoogle Scholar
  74. GabizonA PD (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1103:94–100CrossRefGoogle Scholar
  75. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping the immune responses. Nat Rev Immunol 9:465–479PubMedCrossRefGoogle Scholar
  76. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315PubMedCrossRefGoogle Scholar
  77. Gordon S (2002) Pattern recognition receptors. Cell 111:927–930PubMedCrossRefGoogle Scholar
  78. Gram GJ, Karlsson I, Agger EM, Andersen P, Fomsgaard A (2009) A novel liposome-based adjuvant CAF01 for induction of CD8+ cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A*0201 transgenic mice. PLoS One 4:e6950PubMedCrossRefGoogle Scholar
  79. Greenwood DLV, Dynon K, Kalkanidis M, Xiang S, Plebanski M, Scheerlinck J-P Y (2008) Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine 26:2706–2713PubMedCrossRefGoogle Scholar
  80. Gregoriadis G (1994) The immunological adjuvant and vaccine carrier properties of liposomes. J Drug Target 2:351–356PubMedCrossRefGoogle Scholar
  81. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRefGoogle Scholar
  82. Gursel I, Gursel M, Ishii KJ, Klinman DM (2001) Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 167:3324–3328PubMedGoogle Scholar
  83. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26:5046–5057PubMedCrossRefGoogle Scholar
  84. Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63:943–955PubMedCrossRefGoogle Scholar
  85. Hamzah J, Altin JG, Herringson T, Parish CR, Hammerling GJ, O’Donoghue H, Ganns R (2009) Targeted liposomal delivery of TLR9 ligands activates spontaneous antitumor immunity in an autochthonous cancer model. J Immunol 183:1091–1098PubMedCrossRefGoogle Scholar
  86. Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420PubMedCrossRefGoogle Scholar
  87. Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1239:133–144PubMedCrossRefGoogle Scholar
  88. Hansen J, Lindenstrøm T, Lindberg-Levin J, Aagaard C, Andersen P, Agger EM (2011) CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol Immunother [Epub ahead of print] PMID: 22095092Google Scholar
  89. Harper DM (2009) Currently approved prophylactic HPV vaccines. Expert Rev Vaccines 8:1663–1679PubMedCrossRefGoogle Scholar
  90. Hashimoto M, Avada T, Kinjvo I, Hiwatashi K, Yoshida H, Okada Y, Kobayashi T, Yoshimura A (2009) Silencing SOCS1 in macrophages suppresses tumour development by antitumor inflammation. Cancer Sci 100:730–736PubMedCrossRefGoogle Scholar
  91. Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10:1237–1244PubMedCrossRefGoogle Scholar
  92. Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villandangos JA (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26PubMedCrossRefGoogle Scholar
  93. Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 321:926–932CrossRefGoogle Scholar
  94. Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D (2011) Liposomal vaccine delivery systems. Expert Opin Drug Deliv 8:505–519PubMedCrossRefGoogle Scholar
  95. Herringson TP, Altin JG (2009) Convenient targeting of stealth siRNA-lipoplexes to cells with chelator lipid-anchored molecules. J Control Release 39:229–238CrossRefGoogle Scholar
  96. Herringson TP, Patlolla RR, Altin JG (2009) Targeting of plasmid DNA-lipoplexes to cells with molecules anchored via a metal chelator lipid. J Gene Med 11:1048–1063PubMedCrossRefGoogle Scholar
  97. Hiwatashi K, Yoshida H, Okada Y et al (2009) Silencing SOCS1 in macrophages suppresses tumour development by antitumor inflammation. Cancer Sci 100:730–736PubMedCrossRefGoogle Scholar
  98. Ho J, Al-Deen FM, Al-Abboodi A, Selomulya C, Xiang SD, Plebanski M, Forde GM (2011) N, N’-Carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids Surf B Biointerfaces 83:83–90PubMedCrossRefGoogle Scholar
  99. Hong B, Ren W, Song XT, Evel-Kabier K, Chen SY, Huang XF (2009) Human suppressor of cytokine signalling 1 controls immunostimulatory activity of monocyte-derived dendritic cells. Cancer Res 69:8076–8084PubMedCrossRefGoogle Scholar
  100. Hou W-S, Van Parijs L (2004) A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat Immunol 5:583–589PubMedCrossRefGoogle Scholar
  101. Immordino ML, Dosio F, Catlel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315PubMedCrossRefGoogle Scholar
  102. Jackson H, Dimopoulos N, Mifsud NA, Tai TY, Chen Q, Svobodova S, Browning J, Luescher I, Stockert L, Old LJ, Davis ID, Cebon J, Chen W (2006) Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T cell responses to tumor antigen NY-ESO-1. J Immunol 176:5908–5917PubMedGoogle Scholar
  103. Jain S, O’Hagan DT, Singh M (2011) The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 10:1731–1742PubMedCrossRefGoogle Scholar
  104. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Del Rev 47:83–97CrossRefGoogle Scholar
  105. Jensen-Jarolim E, Singer J (2011) Cancer vaccines inducing antibody production: more pros than cons. Expert Rev Vaccines 10:1281–1289PubMedCrossRefGoogle Scholar
  106. Jespers L, Schon O, Famm K, Winter G (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165PubMedCrossRefGoogle Scholar
  107. Jiang W, Swiggard WJ, Heufler C, Peng M, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelium cells is involved in antigen processing. Nature 375:151–155PubMedCrossRefGoogle Scholar
  108. Jin MS, Lee J-O (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–191PubMedCrossRefGoogle Scholar
  109. Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Mullhaupt B, Gerlach T, Speck RF, Bot A, Kundig TM (2008) Antigen kinetics determines immune reactivity. Proc Natl Acad Sci USA 105:5189–5194PubMedCrossRefGoogle Scholar
  110. Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1–13PubMedCrossRefGoogle Scholar
  111. Kamath AT, Rochat AF, Christensen D, Agger EM, Andersen P, Lambert PH, Siegrist CA (2009) A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PLoS One 4:e5771PubMedCrossRefGoogle Scholar
  112. Karkarda M, Weir GM, Quinton T, Feutes-Ortega A, Mansour M (2010) A liposome-based platform, Vaccimax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine 28:6176–6182CrossRefGoogle Scholar
  113. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222:129–144PubMedCrossRefGoogle Scholar
  114. Kersten G, Hirschberg H (2004) Antigen delivery systems. Expert Rev Vaccines 3:453–462PubMedCrossRefGoogle Scholar
  115. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354:235–241PubMedCrossRefGoogle Scholar
  116. Kim TW, Lee J-H, He L, Boyd DA, Hardwick JM, Hung CF, Wu TC (2005) Modification of professional APCs with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 65:309–316PubMedGoogle Scholar
  117. Kobayashi T, Yoshimura A (2005) Keeping DCs awake by putting SOCS1 to sleep. Trends Immunol 26:177–179PubMedCrossRefGoogle Scholar
  118. Kool M, Pétrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759PubMedGoogle Scholar
  119. Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, Geisler C, Andersen P (2007) The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121:216–226PubMedCrossRefGoogle Scholar
  120. Kotton CN (2008) Vaccination and immunization against travel-related diseases in immunocompromised hosts. Expert Rev Vaccines 7:663–672PubMedCrossRefGoogle Scholar
  121. Krishnan SGD (2008) Archaeosome adjuvants: immunological capabilities and mechanism (s) of action. Vaccine 26:2043–2055PubMedCrossRefGoogle Scholar
  122. Krishnan SS, Patel GB, Sprott GD (2000) Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. J Immunol 165:5177–5185PubMedGoogle Scholar
  123. Krishnan L, Sad S, Patel GB, Sprott GD (2003) Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res 63:2526–2534PubMedGoogle Scholar
  124. Kumar D, Kirimanjeswara G, Metzger DW (2011) Intranasal administration of an inactivated Yersinia pestis vaccine with interleukin-12 generates protective immunity against pneumonic plague. Clin Vaccine Immunol 18:1925–1935PubMedCrossRefGoogle Scholar
  125. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18PubMedCrossRefGoogle Scholar
  126. Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, Phipson B, Shi W, Smyth GK, Lew AM, Kato Y, Mueller SN, Davey GM, Heath WR, Shortman K, Caminschi I (2011) Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol 187:842–850PubMedCrossRefGoogle Scholar
  127. Laing P, Bacon A, McCormack B, Bregoriadis G, Frisch B, Schber F (2006) The ‘co-delivery’ approach to liposomal vaccines: application to the development of influenza-A and hepatitis-B vaccine candidates. J Liposome Res 16:229–235PubMedCrossRefGoogle Scholar
  128. Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276PubMedCrossRefGoogle Scholar
  129. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192PubMedCrossRefGoogle Scholar
  130. Lee K-D, Hong K, Papahadjopoulos D (1992) Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta 1103:185–197PubMedCrossRefGoogle Scholar
  131. Lenarczyk A, Le TT, Drane D, Malliaros J, Pearse M, Hamilton R, Cox J, Luft T, Gardner J, Suhbrier A (2004) ISCOM based vaccines for cancer immunotherapy. Vaccine 22:963–974PubMedCrossRefGoogle Scholar
  132. Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discov 10:591–600PubMedCrossRefGoogle Scholar
  133. Li WM, Bally MB, Schutze-Redelmeier MP (2001) Enhanced immune response to T-independent antigen by using CpG oligodeoxynucleotides encapsulated in liposomes. Vaccine 20:148–57PubMedCrossRefGoogle Scholar
  134. Li Y, Hu Y, Jin Y, Zang G, Wong J, Sun LQ, Wang M (2011) Prophylactic, therapeutic and immune enhancement effect of liposome-encapsulated PolyICLC on highly pathogenic H5N1 influenza infection. J Gene Med 13:60–72PubMedCrossRefGoogle Scholar
  135. Lin YL, Liang YC, Chiang BL (2007) Placental growth factor down-regulates Th1 T immune response by modulating the function of dendritic cells. J Leukoc Biol 82:1473–1480PubMedCrossRefGoogle Scholar
  136. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239:62–84PubMedCrossRefGoogle Scholar
  137. Liu G, Ng H, Akasaki Y, Yuan X, Ehtesham M, Yin D, Black KL, Yu JS (2004) Small interference RNA modulation of IL-10 in human monocyte-derived DCs enhances the Th1 response. Eur J Immunol 171:691–696Google Scholar
  138. Lovgren Bengtsson K, Morein B, Osterhaus AD (2011) ISCOM technology-based Matrix MTM adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines 10:401–403PubMedCrossRefGoogle Scholar
  139. Lu Y, Kawakami S, Yamashita F, Hashida M (2007) Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials 28:3255–3262PubMedCrossRefGoogle Scholar
  140. Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19:1480–1487PubMedCrossRefGoogle Scholar
  141. Ma Y, Zhuang Y, Xie X, Wang C, Wang F, Zhou D, Zeng J, Cai I (2011) The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3:2307–2314PubMedCrossRefGoogle Scholar
  142. Maeda T, Balakrishnan K, Mehdi SQ (1983) A simple and rapid method for the preparation of plasma membranes. Biochim Biophys Acta 731:115–120PubMedCrossRefGoogle Scholar
  143. Manjappa AS, Chaudhari KR, Venkataraju MP, Dantuluri P, Nanda B, Sidda C, Sawant KK, Ramachandra Murphy RS (2011) Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 150:2–22PubMedCrossRefGoogle Scholar
  144. Manley CA, Leibman NF, Wolchok JD, Riviere IC, Barlido S, Craft DM, Bergman PJ (2011) Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs. J Vet Intern Med 25:94–99PubMedCrossRefGoogle Scholar
  145. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57:1–8PubMedCrossRefGoogle Scholar
  146. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumour-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179PubMedCrossRefGoogle Scholar
  147. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293PubMedCrossRefGoogle Scholar
  148. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  149. Marutama K, Kennel SJ, Huang L (1990) Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 87:5744–5748CrossRefGoogle Scholar
  150. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747PubMedCrossRefGoogle Scholar
  151. Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I (2004) T cell repertoire scanning is promoted by dynamic dendritic cell behaviour and random T cell motility in the lymph node. Proc Natl Acad Sci USA 101:998–1003PubMedCrossRefGoogle Scholar
  152. Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25:1316–1327PubMedCrossRefGoogle Scholar
  153. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439PubMedCrossRefGoogle Scholar
  154. Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri S, Lafosse E, Le Cam E, Quesniaux VFJ, Ryffel B, Pichon C, Midoux P (2007) MRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes mRNA-based cancer vaccine. Cancer Gene Ther 14:802–814PubMedCrossRefGoogle Scholar
  155. Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larrengina AT, Morelli AE (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090PubMedGoogle Scholar
  156. Montomoli E, Piccirella S, Khadang B, mennitto E, Camerini R, de Rosa A (2011) Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines 10:1053–1061PubMedCrossRefGoogle Scholar
  157. Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1:199–205PubMedCrossRefGoogle Scholar
  158. Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84PubMedCrossRefGoogle Scholar
  159. Mui B, Raney SG, Semple SC, Hope MJ (2001) Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J Pharmacol Exp Ther 298:1185–1192PubMedGoogle Scholar
  160. Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, Nakanashi M, Tanaka K, Mayumi T (1999) Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release 61:233–240PubMedCrossRefGoogle Scholar
  161. Naylor CJ, Jones RC (1994) Demonstration of a virulent subpopulation in a prototype live attenuated turkey rhinotracheitis vaccine. Vaccine 12:1225–1230PubMedCrossRefGoogle Scholar
  162. Nchinda G, Zschornig O, Uberla K (2003) Increased non-viral gene transfer levels in mice by concentration of cationic lipid DNA complexes formed under optimized conditions. J Gene Med 5:712–722PubMedCrossRefGoogle Scholar
  163. Nelson K, Janssen JM, Troy SB, Maldonado Y (2011) Intradermal fractional dose inactivated polio vaccine: a review of the literature. Vaccine 30:121–125Google Scholar
  164. Newman KD, Elamanchili P, Kwon GS, Samuel J (2002) Uptake of poly(D, L-lactic-coglycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 60:480–486PubMedCrossRefGoogle Scholar
  165. Nicholaou T, Chen W, Davis ID, Jackson HM, Dimopoulos N, Barrow C, Browning J, Macgregor D, Williams D, Hopkins W, Maraskovsky E, Venhaus R, Pan L, Hoffman EW, Old LJ, Cebon J (2011) Immunoediting and persistence of antigen-specific immunity in patients who have previously been vaccinated with NY-ESO-1 protein formulated in ISCOMATRIX™. Cancer Immunol Immunother 60:1625–1637PubMedCrossRefGoogle Scholar
  166. Oszlánczi G, Papp A, Szabó A, Nagymajteny L, Sapi A, Konya Z, Paulik E, Vezer T (2011) Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol 23:173–181PubMedCrossRefGoogle Scholar
  167. Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune response. Expert Rev Vaccines 9:1095–1107PubMedCrossRefGoogle Scholar
  168. Panda AK (2011) Induction of anti-tumor immunity and T-cell responses using nanodelivery systems engrafting TLR-5 ligand. Expert Rev Vaccines 10:155–157PubMedCrossRefGoogle Scholar
  169. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee K-D, Woodle MC, Lasic DD, Redemann C, Martin FJ (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464PubMedCrossRefGoogle Scholar
  170. Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19:346–351PubMedCrossRefGoogle Scholar
  171. Patel CW (2005) Archaeosome immunostimulatory vaccine delivery system. Curr Drug Deliv 2:407–421PubMedCrossRefGoogle Scholar
  172. Patel GB, Chen W (2010) Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines 9:431–440PubMedCrossRefGoogle Scholar
  173. Patel ZH, Ponce A, Chen W (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 25:8622–8636PubMedCrossRefGoogle Scholar
  174. Patel PA, Zhou H, Chen W (2008) Safety of intranasally administered archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) vaccine in mice. Int J Toxicol 27:329–339PubMedCrossRefGoogle Scholar
  175. Pelkmans L (2005) Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Curr Opin Microbiol 8:331–337PubMedCrossRefGoogle Scholar
  176. Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF, Wu TC (2005) Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 16:584–593PubMedCrossRefGoogle Scholar
  177. Perche F, Gosset D, Mével M, Ml M, Yaouanc JJ, Pichon C, Benvegnu T, Jaffres PA, Midoux P (2011) Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 19:315–325PubMedCrossRefGoogle Scholar
  178. Peres J (2011) For cancers caused by HPV, two vaccines were just the beginning. J Natl Cancer Inst 103:360–362PubMedCrossRefGoogle Scholar
  179. Piechocki MP, Ho Y-S, Pilon S, Wei W-Z (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171:5787–5794PubMedGoogle Scholar
  180. Pinzon-Charry A, Maxwell T, Lopez AJ (2005) Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol Cell Biol 83:451–461PubMedCrossRefGoogle Scholar
  181. Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, Chang EH (2006) Tumour-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther 17:117–124PubMedCrossRefGoogle Scholar
  182. Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ (2011) Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 7:1–10PubMedCrossRefGoogle Scholar
  183. Pulendran B, Tang H, Manicassamy S (2010) Programming dendritic cells to induce TH2 and tolerogenic responses. Nat Immunol 11:647–655PubMedCrossRefGoogle Scholar
  184. Radkevich-Brown O, Jacob J, Kershaw M, Wei W-Z (2009) Genetic regulation of the response to Her-2 DNA vaccination in human Her-2 Tg mice. Cancer Res 69:212–218PubMedCrossRefGoogle Scholar
  185. Reed SG, Berthalet S, Coler RN, Friede M (2008) New horizons in adjuvants for vaccine development. Trends Immunol 30:23–32PubMedCrossRefGoogle Scholar
  186. Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120PubMedCrossRefGoogle Scholar
  187. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13:106–112PubMedCrossRefGoogle Scholar
  188. Rieux AD, Fievez V, Garinot M, Schneider Y-J, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27PubMedCrossRefGoogle Scholar
  189. Rodriguez LL, Gay CG (2011) Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev Vaccines 10:377–387PubMedCrossRefGoogle Scholar
  190. Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176PubMedCrossRefGoogle Scholar
  191. Roman F, Clément F, Dewe W, Walravens K, Maes C, Willekens J, De Boever F, Hanon E, Leroux-Roels G (2011) Effect on cellular and humoral immune responses of the AS03 adjuvant system in an A/H1N1/2009 influenza virus vaccine administered to adults during two randomized controlled trials. Clin Vaccine Immunol 18:835–843PubMedCrossRefGoogle Scholar
  192. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRefGoogle Scholar
  193. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763PubMedCrossRefGoogle Scholar
  194. Sangha R, Butts C (2007) L-BLP25: a peptide vaccine strategy in non-small cell lung cancer. Clin Cancer Res 13:s4652–s4654PubMedCrossRefGoogle Scholar
  195. Sangha R, North S (2007) L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin Biol Ther 7:1723–1730PubMedCrossRefGoogle Scholar
  196. Sangha R, Price J, Butts CA (2010) Adjuvant therapy in non-small cell lung cancer: current and future directions. Oncologist 15:862–872PubMedCrossRefGoogle Scholar
  197. Schijns VE, Degen WG (2007) Vaccine immunopotentiators of the future. Clin Pharmacol Ther 82:750–755PubMedCrossRefGoogle Scholar
  198. Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151:278–285PubMedCrossRefGoogle Scholar
  199. Schwendener RA, Ludewig B, Cerny A, Engler O (2010) Liposome-based vaccines. Methods Mol Biol 605:163–175PubMedCrossRefGoogle Scholar
  200. Serre K, Giraudo L, Leserman L, Machy P (2003) Liposomes targeted to Fc receptors for antigen presentation by dendritic cells in vitro and in vivo. Methods Enzymol 373:100–118PubMedCrossRefGoogle Scholar
  201. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140CrossRefGoogle Scholar
  202. Sharma S, Srivastava MK, Harris-White M, Lee JM, Dubinett S (2011) MUC1 peptide vaccine mediated antitumor activity in non-small cell lung cancer. Expert Opin Biol Ther 11:987–990PubMedCrossRefGoogle Scholar
  203. Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J, O’Neill LA, Lavelle EC (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875PubMedCrossRefGoogle Scholar
  204. Shedlock DJ, Weiner DB (2000) DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 68:793–806PubMedGoogle Scholar
  205. Shen L, Evel-Kabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotech 22(12):1546–1553CrossRefGoogle Scholar
  206. Shen L, Evel K, Strube R, Chen S-Y (2005) Critical regulation of Ag presentation by SOCS1 in dendritic cells and implications for vaccine development. Proc Amer Assoc Cancer Res Immunology 7:Dendritic cell-based immunotherapy. Abstract# 4235Google Scholar
  207. Shortman K, Heath WR (2010) The CD8+ dendritic cell subset. Immunol Rev 234:18–31PubMedCrossRefGoogle Scholar
  208. Shortman K, Liu Y-J (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161PubMedCrossRefGoogle Scholar
  209. Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30PubMedCrossRefGoogle Scholar
  210. Shrivastava S, Lole KS, Tripathy AS, Shaligram US, Arankalle VA (2009) Development of candidate combination vaccine for hepatitis E and hepatitis B: A liposome encapsulation approach. Vaccine 27:6582–6588PubMedCrossRefGoogle Scholar
  211. Signori E, Iurescia S, Massi E, Fioretti D, Chiarella P, De Robertis M, Rinaldi M, Tonon G, Fazio VM (2010) DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother 59:1583–1591PubMedCrossRefGoogle Scholar
  212. Skene CD, Sutton P (2006) Saponin-adjuvanted particulate vaccines for clinical use. Methods 40:53–59PubMedCrossRefGoogle Scholar
  213. Skene CD, Doidge C, Sutton P (2008) Evaluation of ISCOMATRIX and ISCOM vaccines for immunisation against Helicobacter pylori. Vaccine 26:3880–3884PubMedCrossRefGoogle Scholar
  214. Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8:282–289PubMedGoogle Scholar
  215. Song E, Lee S-K, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351PubMedCrossRefGoogle Scholar
  216. Song E, Zhu P, Lee S-K, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotech 23:709–717CrossRefGoogle Scholar
  217. Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766PubMedCrossRefGoogle Scholar
  218. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178PubMedCrossRefGoogle Scholar
  219. Stagg J, Sharkey J, Pommey S, Pommey S, Young R, Takeda K, Yagita H, Johnstone RW, Smyth MJ (2008) Antibodies targeted to TRAIL receptor-2 and Erb-2 synergise and induce an antitumor response. Proc Nat Acad Sci 105:16254–16259PubMedCrossRefGoogle Scholar
  220. Steers NJ, Peachman KK, McClain S, Alving CR, Rao M (2009) Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine 27:6939–6949PubMedCrossRefGoogle Scholar
  221. Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29:3341–3355PubMedCrossRefGoogle Scholar
  222. Steinman RM (2008) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324PubMedCrossRefGoogle Scholar
  223. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426PubMedCrossRefGoogle Scholar
  224. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58PubMedCrossRefGoogle Scholar
  225. Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234:5–17PubMedCrossRefGoogle Scholar
  226. Stobiecka M, Hepel M (2011) Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Biomaterials 32:3312–21PubMedCrossRefGoogle Scholar
  227. Suhrbier A (2002) Polytope vaccines for the codelivery of multiple CD8 T-cell epitopes. Expert Rev Vaccines 1:207–213PubMedCrossRefGoogle Scholar
  228. Sun J-Y, Krouse RS, Forman SJ, Senitzer D, Sniecinski I, Chatterjee S, Wong KK Jr (2002) Immunogenicity of a p210BCR-ABL fusion domain candidate DNA vaccine targeted to dendritic cells by a recombinant adeno-associated virus vector in vitro. Cancer Res 62:3175–3183PubMedGoogle Scholar
  229. Tacken PJ, Torensma R, Figdor CG (2006) Targeting antigens to dendritic cells in vivo. Immunobiology 211:599–608PubMedCrossRefGoogle Scholar
  230. Tacken PJ, de Vries IJM, Torensma R, Fidgor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802PubMedCrossRefGoogle Scholar
  231. Taneichi M, Ishida H, Kajino K, Ogasawara K, Tanaka Y, Kasai M, Mori M, Nishidia M, Yamamura H, Mizuguchi J, Uchida T (2006) Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J Immunol 177:2324–2330PubMedGoogle Scholar
  232. Tang C-K, Apostolopoulos V (2008) Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines 7:951–962PubMedCrossRefGoogle Scholar
  233. Tang CK, Sheng K-C, Pouniotis D, Esparon S, Son H-Y, Kim C-W, Pietersz GA, Apostolopoulos V (2008) Oxidised and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine 26:3827–3834PubMedCrossRefGoogle Scholar
  234. Tefit JN, Serra V (2011) Outlining novel cellular adjuvant products for therapeutic vaccines against cancer. Expert Rev Vaccines 10:1207–1220PubMedCrossRefGoogle Scholar
  235. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedGoogle Scholar
  236. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyers of immune responses. Nat Rev Immunol 9:581–593PubMedCrossRefGoogle Scholar
  237. Thomann JS, Heurtault B, Weidner S, Braye M, Beyrath J, Fournel S, Schuber F, Frisch B (2011) Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 32:4574–4583PubMedCrossRefGoogle Scholar
  238. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedCrossRefGoogle Scholar
  239. Torchilin VP (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5:1003–1025PubMedCrossRefGoogle Scholar
  240. Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334PubMedCrossRefGoogle Scholar
  241. U’Ren L, Kedl R, Dow S (2006) Vaccination with liposome-DNA complexes elicits enhanced anti-tumor immunity. Cancer Gene Ther 13:1033–1044PubMedCrossRefGoogle Scholar
  242. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150PubMedCrossRefGoogle Scholar
  243. van Broekhoven CL, Altin JG (2002) A novel approach for modifying tumor cell-derived plasma membrane vesicles to contain encapsulated IL-2 and engrafted costimulatory molecules for use in tumor immunotherapy. Int J Cancer 98:63–72PubMedCrossRefGoogle Scholar
  244. van Broekhoven CL, Altin JG (2005) The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim Biophys Acta 1716:104–116PubMedCrossRefGoogle Scholar
  245. van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for inducing anti-tumour immunity and for tumour immunotherapy. Cancer Res 64:4357–4365PubMedCrossRefGoogle Scholar
  246. van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teuissen MB (2007) Loss of TLR2, TLR4 and TLR5 on Langerhan cells abolishes bacterial recognition. J Immunol 178:1986–1990PubMedGoogle Scholar
  247. Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD, Huang L (2006) Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 23:385–395PubMedCrossRefGoogle Scholar
  248. Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555PubMedCrossRefGoogle Scholar
  249. Vyas SP, Goyal AK, Khatri K (2010) Mannosylated liposomes for targeted vaccines delivery. Methods Mol Biol 605:177–188PubMedCrossRefGoogle Scholar
  250. Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen J, Eisen HN, Heller J, Langer R, Putnam D (2004a) Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3:190–196PubMedCrossRefGoogle Scholar
  251. Wang Z, Troilo P, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L, Follmer TT, Rizzuto G, Ciliberto G, Fattori E, Monica NL, Manam S, Ledwith BJ (2004b) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721PubMedCrossRefGoogle Scholar
  252. Wen ZS, Xu YL, Zou XT, Xu ZR (2011) Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 9:1038–1055PubMedCrossRefGoogle Scholar
  253. White KL, Rades T, Furneaux RH, Tyler PC, Hook S (2006a) Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol 58:729–737PubMedCrossRefGoogle Scholar
  254. White K, Rades T, Kearns P, Toth I, Hook S (2006b) Immunogenicity of liposomes containing lipid core peptides and adjuvant Quil a. Pharm Res 23:1473–1481PubMedCrossRefGoogle Scholar
  255. Wichmann HE (2007) Diesel exhaust particles. Inhal Toxicol 19:241–244PubMedCrossRefGoogle Scholar
  256. Wong K, Valdez PA, Tan C, Yeh S, Hongo JA, Ouyang W (2010) Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 107:8712–8717PubMedCrossRefGoogle Scholar
  257. Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M (2008) Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 7:1103–1119PubMedCrossRefGoogle Scholar
  258. Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M (2010) Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:205–218PubMedCrossRefGoogle Scholar
  259. Yanagisawa R, Takano H, Inoue KI, Koike E, Sadakane K, Ichinose T (2010) Size effects of polystyrene nanoparticles on atopic dermatitis-like skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 23:131–141PubMedGoogle Scholar
  260. Yang L, Carbone DP (2004) Tumor host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27PubMedCrossRefGoogle Scholar
  261. Yang P, Duan Y, Wang C, Xing L, Gao X, Tang C, Luo D, Zhao Z, Jia W, Peng D, Liu X, Wang X (2011) Immunogenicity and protective efficacy of a live attenuated vaccine against the 2009 pandemic A H1N1 in mice and ferrets. Vaccine 29:698–705PubMedCrossRefGoogle Scholar
  262. You Z, Huang X, Hester J, Toh HC, Chen SY (2001) Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 61:3704–3711PubMedGoogle Scholar
  263. Yukihiko A, Hiroyuki S, Seishi T (1995) Interferon-γ inductive effect of liposomes as an immunoadjuvant. Vaccine 13:1809–1814CrossRefGoogle Scholar
  264. Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25:2085–2094PubMedCrossRefGoogle Scholar
  265. Zaharoff DA, Hoffman BS, Hooper HB, Benjamin CJ Jr, Khurana KK, Hance KW, Rogers CJ, Pinto PA, Schlom J, Greiner JW (2009) Intra vesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res 69:6192–6199PubMedCrossRefGoogle Scholar
  266. Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S (2006) Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 176:7335–7345PubMedGoogle Scholar
  267. Zelenay S, Elias F, Flo J (2003) Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. Eur J Immunol 33:1382–1392PubMedCrossRefGoogle Scholar
  268. Zhang Y, Boado RJ, Pardridge WM (2003) Marked enhancement in gene expression by targeting the human insulin receptor. J Gene Med 5:157–163PubMedCrossRefGoogle Scholar
  269. Zhang S, Zhang H, Shi H, Yu X, Kong W, Li W (2008) Induction of immune response and anti-tumor activities in mice with DNA vaccine encoding human mucin 1 variable-number tandem repeats. Hum Immunol 69:250–258PubMedCrossRefGoogle Scholar
  270. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32:3666–3678PubMedCrossRefGoogle Scholar
  271. Zheng X, Vladau C, Zhang X, Suzuki M, Ichim TE, Zhang ZX, Li M, Carrier E, Garcia B, Jevnikar AM, Min WP (2009) A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 113:2646–2654PubMedCrossRefGoogle Scholar
  272. Zhou H, Zhang D, Wang Y, Dai M, Zhang L, Liu W, Liu D, Tan H, Huang Z (2006) Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 347:200–207PubMedCrossRefGoogle Scholar
  273. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraAustralia

Personalised recommendations