Advertisement

Filamentous Bacteriophages: An Antigen and Gene Delivery System

  • Rossella Sartorius
  • Domenico Russo
  • Luciana D’Apice
  • Piergiuseppe De BerardinisEmail author
Chapter

Abstract

In the past years bacteriophages have been employed in a wide array of applications including therapy of bacterial infections, genetic research and the discovery of specific target binding proteins. More recently they have been proposed as delivery vehicles for peptides/proteins and DNA in the development of phage delivered vaccines and for gene therapy. Because of their efficacy, low cost, safety and physical stability, bacteriophages have represented and still represent a relevant and pro­mising tool in this diverse range of fields. The aim of this chapter is to review studies where filamentous bacteriophages were applied as antigen and gene delivery vehicles and to emphasize their several potential applications in modern medicine and biotechnology.

Keywords

Antigen delivery Filamentous bacteriophage Vaccine CD8 T cells Dendritic cells DEC-205 Humoral immunity 

References

  1. Böckmann M, Drosten M, Pützer BM (2005) Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J Gene Med 7:179–188PubMedCrossRefGoogle Scholar
  2. Buchwald UK, Lees A, Steinitz M, Pirofski LA (2005) A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice. Infect Immun 73:325–333PubMedCrossRefGoogle Scholar
  3. Burg MA, Jensen-Pergakes K, Gonzales AM, Ravey P, Baird A, Larocca D (2002) Enhanced phagemid particle gene transfer in camptothecin-treated carcinoma cells. Cancer Res 62:977–981PubMedGoogle Scholar
  4. Chung YS, Sabel K, Kronke M, Klimka A (2008) Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage. BMC Mol Biol 9:37PubMedCrossRefGoogle Scholar
  5. Clark JR, March JB (2004) Bacteriophage-mediated nucleic acid immunisation. FEMS Immunol Med Microbiol 40:21–26PubMedCrossRefGoogle Scholar
  6. Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218PubMedCrossRefGoogle Scholar
  7. Clark JR, Bartley K, Jepson CD, Craik V, March JB (2011) Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol Med Microbiol 61:197–204PubMedCrossRefGoogle Scholar
  8. De Berardinis P, Sartorius R, Fanutti C, Perham RN, Del Pozzo G, Guardiola J (2000) Phage display of peptide epitopes from HIV-1 elicits strong cytolytic responses. Nat Biotechnol 18:873–876PubMedCrossRefGoogle Scholar
  9. De Lorenzo C, Palmer DB, Piccoli R, Ritter MA, D’Alessio G (2002) A new human antitumor immunoreagent specific for ErbB2. Clin Cancer Res 8:1710–1719PubMedGoogle Scholar
  10. di Marzo VF, Willis AE, Boyer-Thompson C, Appella E, Perham RN (1994) Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. J Mol Biol 243:167–172CrossRefGoogle Scholar
  11. Eriksson F, Culp WD, Massey R, Egevad L, Garland D, Persson MAA, Pisa P (2007) Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56:677–687PubMedCrossRefGoogle Scholar
  12. Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM, Persson MA, Harris RA, Pisa P (2009) Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182:3105–3111PubMedCrossRefGoogle Scholar
  13. Esposito M, Luccarini I, Cicatiello V, De Falco D, Fiorentini A, Barba P, Casamenti F, Prisco A (2008) Immunogenicity and therapeutic efficacy of phage-displayed beta-amyloid epitopes. Mol Immunol 45:1056–1062PubMedCrossRefGoogle Scholar
  14. Fang J, Wang G, Yang Q, Song J, Wang Y, Wang L (2005) The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model. Vaccine 23:4860–4866PubMedCrossRefGoogle Scholar
  15. Gaubin M, Fanutti C, Mishal Z, Durrbach A, De Berardinis P, Sartorius R, Del Pozzo G, Guardiola J, Perham RN, Piatier-Tonneau D (2003) Processing of filamentous bacteriophage virions in antigen-presenting cells targets both HLA class I and class II peptide loading compartments. DNA Cell Biol 22:11–18PubMedCrossRefGoogle Scholar
  16. Greenwood J, Willis AE, Perham RN (1991) Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum sporozoite protein as antigen. J Mol Biol 220:821–827PubMedCrossRefGoogle Scholar
  17. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC III, Restel BH, Ozawa MG, Moya CA, Rangel R, Sun Y, Zaoui K, Schmidt M, von Kalle C, Weitzmann MD, Gelovani JG, Pasqualini R, Arap W (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398PubMedCrossRefGoogle Scholar
  18. Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG, Alauddin MM, Pasqualini R, Arap W (2007) Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc 2:523–531PubMedCrossRefGoogle Scholar
  19. Hashemi H, Bamdad T, Jamali A, Pouyanfard S, Mohammadi MG (2010) Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine. J Virol Methods 163:440–444PubMedCrossRefGoogle Scholar
  20. Jelinek R, Terry TD, Gesell JJ, Malik P, Perham RN, Opella SJ (1997) NMR structure of the principal neutralizing dÝLerminant of HIV-1 displayed in filamentous bacteriophage coat protein. J Mol Biol 266:649–655PubMedCrossRefGoogle Scholar
  21. Larocca D, Kassner PD, Witte A, Ladner RC, Pierce GF, Baird A (1999) Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 13:727–734PubMedGoogle Scholar
  22. Larralde OG, Martinez R, Camacho F, Amin N, Aguilar A, Talavera A, Stott DI, Perez EM (2007) Identification of hepatitis A virus mimotopes by phage display, antigenicity and immunogenicity. J Virol Methods 140:49–58PubMedCrossRefGoogle Scholar
  23. Li XB, Schluesener HJ, Xu SQ (2006) Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp 54:177–181CrossRefGoogle Scholar
  24. Li QY, Gordon MN, Chackerian B, Alamed J, Ugen KE, Morgan D (2010) Virus-like peptide vaccines against a beta N-terminal or C-terminal domains reduce amyloid deposition in APP transgenic mice without addition of adjuvant. J Neuroimmune Pharmacol 5:133–142PubMedCrossRefGoogle Scholar
  25. Malik P, Perham RN (1996) New vectors for peptide display on the surface of filamentous bacteriophage. Gene 171:49–51PubMedCrossRefGoogle Scholar
  26. Malik P, Perham RN (1997) Simultaneous display of different peptides on the surface of filamentous bacteriophage. Nucleic Acids Res 25:915–916PubMedCrossRefGoogle Scholar
  27. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  28. Minenkova OO, Ilyichev AA, Kishchenko GP, Petrenko VA (1993) Design of specific immunogens using filamentous phage as the carrier. Gene 128:85–88PubMedCrossRefGoogle Scholar
  29. Newton JR, Kelly KA, Mahmood U, Weissleder R, Deutscher SL (2006) In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia 8:772–780PubMedCrossRefGoogle Scholar
  30. Park I, Choi IH, Kim SJ, Shin JS (2004) Peptide mimotopes of Neisseria meningitidis group B capsular polysaccharide. Yonsei Med J 45:755–758PubMedGoogle Scholar
  31. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–365PubMedCrossRefGoogle Scholar
  32. Poul MA, Marks JD (1999) Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 288:203–211PubMedCrossRefGoogle Scholar
  33. Sapinoro R, Volcy K, Rodrigo WW, Schlesinger JJ, Dewhurst S (2008) Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells. Virology 373:274–286PubMedCrossRefGoogle Scholar
  34. Sartorius R, Pisu P, D’Apice L, Pizzella L, Romano C, Cortese G, Giorgini A, Santoni A, Velotti F, De Berardinis P (2008) The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses. J Immunol 180:3719–3728PubMedGoogle Scholar
  35. Sartorius R, Bettua C, D’Apice L, Caivano A, Trovato M, Russo D, Zanoni I, Granucci F, Mascolo D, Barba P, Pozzo G, De Berardinis P (2011) Vaccination with filamentous bacteriophages targeting DEC-205 induces DC maturation and potent anti-tumor T-cell responses in the absence of adjuvants. Eur J Immunol 41:2573–2584PubMedCrossRefGoogle Scholar
  36. Schluesener HJ, Xianglin T (2004) Selection of recombinant phages binding to pathological endothelial and tumor cells of rat glioblastoma by in-vivo display. J Neurol Sci 224:77–82PubMedCrossRefGoogle Scholar
  37. Solomon B (2007) Active immunization against Alzheimer’s beta-amyloid peptide using phage display technology. Vaccine 25:3053–3056PubMedCrossRefGoogle Scholar
  38. Solomon B (2008) Filamentous bacteriophage as a novel therapeutic tool for Alzheimer’s disease treatment. J Alzheimers Dis 15:193–198PubMedGoogle Scholar
  39. Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P (2001) Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 313:965–976PubMedCrossRefGoogle Scholar
  40. van Houten NE, Scott JK (2005) Phage library for developing antibody-targeted diagnostics and vaccines. In: Sidhu SS (ed) Phage display in biotechnology and drug discovery. CRC Press, South San FranciscoGoogle Scholar
  41. van Houten NE, Henry KA, Smith GP, Scott JK (2010) Engineering filamentous phage carriers to improve focusing of antibody responses against peptides. Vaccine 28:2174–2185PubMedCrossRefGoogle Scholar
  42. Wan Y, Wu Y, Bian J, Wang XZ, Zhou W, Jia ZC, Tan Y, Zhou L (2001) Induction of hepatitis B virus-specific cytotoxic T lymphocytes response in vivo by filamentous phage display vaccine. Vaccine 19:2918–2923PubMedCrossRefGoogle Scholar
  43. Wan Y, Wu Y, Zhou J, Zou L, Liang Y, Zhao J, Jia Z, Engberg J, Bian J, Zhou W (2005) Cross-presentation of phage particle antigen in MHC class II and endoplasmic reticulum marker-positive compartments. Eur J Immunol 35:2041–2050PubMedCrossRefGoogle Scholar
  44. Wilkinson RA, Evans JR, Jacobs JM, Slunaker D, Pincus SH, Pinter A, Parkos CA, Burritt JB, Teintze M (2007) Peptides selected from a phage display library with an HIV-neutralizing antibody elicit antibodies to HIV gp120 in rabbits, but not to the same epitope. AIDS Res Hum Retroviruses 23:1416–1427PubMedCrossRefGoogle Scholar
  45. Willis AE, Perham RN, Wraith D (1993) Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene 128:79–83PubMedCrossRefGoogle Scholar
  46. Work LM, Nicol CG, Denby L, Baker AH (2005) In vivo biopanning: a methodological approach to identifying novel targeting ligands for delivery of biological agents to the vasculature. Methods Mol Med 108:395–413PubMedGoogle Scholar
  47. Wu Y, Wan Y, Bian J, Zhao J, Jia Z, Zhou L, Zhou W, Tan Y (2002) Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model. Int J Cancer 98:748–753PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Rossella Sartorius
    • 1
  • Domenico Russo
    • 1
  • Luciana D’Apice
    • 1
  • Piergiuseppe De Berardinis
    • 1
    Email author
  1. 1.Institute of Protein BiochemistryNational Research Council of ItalyNaplesItaly

Personalised recommendations