Advertisement

Design of New Vaccines in the Genomic and Post-genomic Era

  • Laura Serino
  • Kate L. Seib
  • Mariagrazia PizzaEmail author
Chapter

Abstract

During the twentieth century, the introduction of vaccines changed the history of mankind, eliminating most of the childhood diseases that used to cause millions of deaths. However, where conventional vaccinology approaches failed, many new and emerging infectious diseases remain a threat to health worldwide. The advent of whole-genome sequencing and innovation in bioinformatic tools radically changed the way to design and develop new and improved vaccines, starting from the genomic information of a single bacterial or viral isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved in combination with different approaches, such as transcriptomics, metabolomics, structural genomics, proteomics, and immunomics, contributing to the design of new and universal vaccines. Furthermore, the genomic information of the host is increasingly being used to aid understanding of the human immune response to vaccines.

Keywords

Reverse vaccinology Genomics Transcriptomics Metabolomics Structural genomics Proteomics Immunomics 

References

  1. Artenstein AW, Grabenstein JD (2008) Smallpox vaccines for biodefense: need and feasibility. Expert Rev Vac 7:1225–1237CrossRefGoogle Scholar
  2. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103:2857–2862PubMedCrossRefGoogle Scholar
  3. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl):33–37PubMedCrossRefGoogle Scholar
  4. Brzuszkiewicz E, Bruggemann H, Liesegang H, Emmerth M, Olschlager T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emody L, Gottschalk G, Hacker J, Dobrindt U (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884PubMedCrossRefGoogle Scholar
  5. Buonaguro L, Pulendran B (2011) Immunogenomics and systems biology of vaccines. Immunol Rev 239:197–208PubMedCrossRefGoogle Scholar
  6. Burton DR (2010) Scaffolding to build a rational vaccine design strategy. Proc Natl Acad Sci USA 107:17859–17860PubMedCrossRefGoogle Scholar
  7. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21(1 Suppl):15–19PubMedCrossRefGoogle Scholar
  8. Davies DH, Liang X, Hernandez JE, Randall A, Hirst S, Mu Y, Romero KM, Nguyen TT, Kalantari-Dehaghi M, Crotty S, Baldi P, Villarreal LP, Felgner PL (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci USA 102:547–552PubMedCrossRefGoogle Scholar
  9. Dhiman N, Smith DI, Poland GA (2009) Next-generation sequencing: a transformative tool for vaccinology. Expert Rev Vac 8:963–967CrossRefGoogle Scholar
  10. Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667PubMedCrossRefGoogle Scholar
  11. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  12. Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci USA 103:10834–10839PubMedCrossRefGoogle Scholar
  13. Grandi G (2001) Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol 19:181–188PubMedCrossRefGoogle Scholar
  14. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Ratti G, Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H, Rappuoli R, Randazzo F, Grandi G (2002) Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20:914–921PubMedCrossRefGoogle Scholar
  15. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259PubMedCrossRefGoogle Scholar
  16. Hughes MJ, Wilson R, Moore JC, Lane JD, Dobson RJ, Muckett P, Younes Z, Pribul P, Topping A, Feldman RG, Santangelo JD (2003) Novel protein vaccine candidates against Group B streptococcal infection identified using alkaline phosphatase fusions. FEMS Microbiol Lett 222(2):263–271PubMedCrossRefGoogle Scholar
  17. Kaushik DK, Sehgal D (2008) Developing antibacterial vaccines in genomics and proteomics era. Scand J Immunol 67:544–552PubMedCrossRefGoogle Scholar
  18. Kelly D, Moxon ER (2004) Is Haemophilus influenzae type b disease finished? Adv Exp Med Biol 549:221–229PubMedCrossRefGoogle Scholar
  19. Langen H, Takacs B, Evers S, Berndt P, Lahm HW, Wipf B, Gray C, Fountoulakis M (2000) Two-dimensional map of the proteome of Haemophilus influenzae. Electrophoresis 21:411–429PubMedCrossRefGoogle Scholar
  20. Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, Taddei AR, Mora M, Rappuoli R, Grandi G, Telford JL (2005) Genome analysis reveals pili in Group B Streptococcus. Science 309:105PubMedCrossRefGoogle Scholar
  21. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21(1 Suppl):20–24PubMedCrossRefGoogle Scholar
  22. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836PubMedCrossRefGoogle Scholar
  23. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309:148–150PubMedCrossRefGoogle Scholar
  24. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594PubMedCrossRefGoogle Scholar
  25. Montigiani S, Falugi F, Scarselli M, Finco O, Petracca R, Galli G, Mariani M, Manetti R, Agnusdei M, Cevenini R, Donati M, Nogarotto R, Norais N, Garaguso I, Nuti S, Saletti G, Rosa D, Ratti G, Grandi G (2002) Genomic approach for analysis of surface proteins in Chlamydia pneumoniae. Infect Immun 70:368–379PubMedCrossRefGoogle Scholar
  26. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, Maggi T, Taddei AR, Grandi G, Telford JL (2005) Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA 102:15641–15646PubMedCrossRefGoogle Scholar
  27. Moriel DG, Bertoldi I, Spagnuolo A, Marchi S, Rosini R, Nesta B, Pastorello I, Corea VA, Torricelli G, Cartocci E, Savino S, Scarselli M, Dobrindt U, Hacker J, Tettelin H, Tallon LJ, Sullivan S, Wieler LH, Ewers C, Pickard D, Dougan G, Fontana MR, Rappuoli R, Pizza M, Serino L (2010) Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci USA 107:9072–9077PubMedCrossRefGoogle Scholar
  28. Nuccitelli A, Cozzi R, Gourlay LJ, Donnarumma D, Necchi F, Norais N, Telford JL, Rappuoli R, Bolognesi M, Maione D, Grandi G, Rinaudo CD (2011) Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc Natl Acad Sci USA 108:10278–10283PubMedCrossRefGoogle Scholar
  29. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedCrossRefGoogle Scholar
  30. Plotkin SA (2003) Vaccines, vaccination, and vaccinology. J Infect Dis 187:1349–1359PubMedCrossRefGoogle Scholar
  31. Plotkin SA (2009) Vaccines: the fourth century. Clin Vac Immunol 16:1709–1719CrossRefGoogle Scholar
  32. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414PubMedCrossRefGoogle Scholar
  33. Qi SY, Moir A, O’Connor CD (1996) Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map. J Bacteriol 178:5032–5038PubMedGoogle Scholar
  34. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450PubMedCrossRefGoogle Scholar
  35. Rodriguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24:191–197PubMedCrossRefGoogle Scholar
  36. Scarselli M, Arico B, Brunelli B, Savino S, Di Marcello F, Palumbo E, Veggi D, Ciucchi L, Cartocci E, Bottomley MJ, Malito E, Lo Surdo P, Comanducci M, Giuliani MM, Cantini F, Dragonetti S, Colaprico A, Doro F, Giannetti P, Pallaoro M, Brogioni B, Tontini M, Hilleringmann M, Nardi-Dei V, Banci L, Pizza M, Rappuoli R (2011) Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med 3:91ra62PubMedCrossRefGoogle Scholar
  37. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255PubMedCrossRefGoogle Scholar
  38. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16PubMedCrossRefGoogle Scholar
  39. Stacy R, Begley DW, Phan I, Staker BL, Van Voorhis WC, Varani G, Buchko GW, Stewart LJ, Myler PJ (2011) Structural genomics of infectious disease drug targets: the SSGCID. Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 9):979–984PubMedCrossRefGoogle Scholar
  40. Sundaresh S, Randall A, Unal B, Petersen JM, Belisle JT, Hartley MG, Duffield M, Titball RW, Davies DH, Felgner PL, Baldi P (2007) From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics 23:i508–i518PubMedCrossRefGoogle Scholar
  41. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit I, Read TD, Madoff LC, Wolf AM, Beanan MJ, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Lewis MR, Radune D, Fedorova NB, Scanlan D, Khouri H, Mulligan S, Carty HA, Cline RT, Van Aken SE, Gill J, Scarselli M, Mora M, Iacobini ET, Brettoni C, Galli G, Mariani M, Vegni F, Maione D, Rinaudo D, Rappuoli R, Telford JL, Kasper DL, Grandi G, Fraser CM (2002) Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci USA 99:12391–12396PubMedCrossRefGoogle Scholar
  42. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955PubMedCrossRefGoogle Scholar
  43. Thoren K, Gustafsson E, Clevnert A, Larsson T, Bergstrom J, Nilsson CL (2002) Proteomic study of non-typable Haemophilus influenzae. J Chromatogr B Analyt Technol Biomed Life Sci 782:219–226PubMedCrossRefGoogle Scholar
  44. Tobin GJ, Trujillo JD, Bushnell RV, Lin G, Chaudhuri AR, Long J, Barrera J, Pena L, Grubman MJ, Nara PL (2008) Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26:6189–6199PubMedCrossRefGoogle Scholar
  45. Toneatto D, Ismaili S, Ypma E, Vienken K, Oster P, Dull P (2011) The first use of an investigational multicomponent meningococcal serogroup B vaccine (4CMenB) in humans. Hum Vaccin 7:646–653PubMedCrossRefGoogle Scholar
  46. Vytvytska O, Nagy E, Bluggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Laura Serino
    • 1
  • Kate L. Seib
    • 1
  • Mariagrazia Pizza
    • 1
    Email author
  1. 1.Research CentreNovartis Vaccines and DiagnosticsSienaItaly

Personalised recommendations