Skip to main content

Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology

  • Chapter
  • First Online:

Abstract

Metabolic engineering, defined as the practice of manipulating cells’ genetic and regulatory processes for improving cellular performance, has been recently integrating systems and synthetic biology with other technologies, e.g. molecular biology, physiology, biochemistry, analysis science, bioinformatics and biochemical engineering. The aim is to surmount cells’ performance-related limitations, e.g. metabolic limitation of cellular processes, network rigidity and global regulation, in a comprehensive, rational and high-throughput manner. Using this multi-level/integrated approach, the (re)design and (re)construction of microbial systems for the development of novel products with significant impact on current global problems, e.g. depletion of energy resources and global warming, is becoming a reality.

In the last two decades, technological platforms for systems biology, e.g. genomics, transcriptomics, proteomics, metabolomics and fluxomics, and synthetic biology approaches, e.g. synthetic biological parts, devices and systems, have been implemented and efficiently used as tools for metabolic engineering of high-value bioproducts. One successful story on how metabolic engineering has been used to enhance the synthesis of microbial-based molecules is the production of biofuels. In this review, synthetic and systems biology technologies for yeast metabolic engineering will be described in detail. In addition, two case studies related with biofuel production (ethanol and 1-butanol) in yeast S. cerevisiae will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abad S, Nahalka J, Winkler M et al (2011) High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris. Biotechnol Lett 33(3):557–563

    PubMed  CAS  Google Scholar 

  2. Adams M, Kelley J, Gocayne J et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    PubMed  CAS  Google Scholar 

  3. Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Google Scholar 

  4. Akao T, Yashiro I, Hosoyama A et al (2011) Whole-genome sequencing of sake yeast saccharomyces cerevisiae Kyokai no. 7. DNA Res 18:423–434

    PubMed  CAS  Google Scholar 

  5. Albermann C (2011) High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli. Biotechnol Lett 33(2):313–319

    PubMed  CAS  Google Scholar 

  6. Albertsen L, Chen Y, Bach LS et al (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033–1040

    PubMed  CAS  Google Scholar 

  7. Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    CAS  Google Scholar 

  8. Alper H, Fischer C, Nevoigt E et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683

    PubMed  CAS  Google Scholar 

  9. Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    PubMed  CAS  Google Scholar 

  10. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267

    PubMed  CAS  Google Scholar 

  11. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7(10):715–723

    PubMed  CAS  Google Scholar 

  12. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74(12):5350–5354

    PubMed  CAS  Google Scholar 

  13. Andreas B (2011) Improving on nature’s enzymes. Chemistry & Industry Magazine, vol 5. The Society of Chemical Industry (SCI), Wiley

    Google Scholar 

  14. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    PubMed  CAS  Google Scholar 

  15. Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9(3):277–292

    PubMed  CAS  Google Scholar 

  16. Ara K, Ozaki K, Nakamura K et al (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46(Pt 3):169–178

    PubMed  CAS  Google Scholar 

  17. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250

    PubMed  Google Scholar 

  18. Asada H, Uemura T, Yurugi-Kobayashi T et al (2011) Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 10:24

    PubMed  CAS  Google Scholar 

  19. Asadollahi MA, Maury J, Moller K et al (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677

    PubMed  CAS  Google Scholar 

  20. Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328–334

    PubMed  CAS  Google Scholar 

  21. Ashengroph M, Nahvi I, Zarkesh-Esfahani H et al (2011) Candida galli strain PGO6: a novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. Curr Microbiol 62(3):990–998

    PubMed  CAS  Google Scholar 

  22. Askenazi M, Driggers EM, Holtzman DA et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21(2):150–156

    PubMed  CAS  Google Scholar 

  23. Atkins D, Gerlach WL (1994) Artificial ribozyme and antisense gene expression in Saccharomyces cerevisiae. Antisense Res Dev 4(2):109–117

    PubMed  CAS  Google Scholar 

  24. Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311

    PubMed  CAS  Google Scholar 

  25. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180

    PubMed  CAS  Google Scholar 

  26. Atsumi S, Wu TY, Eckl EM et al (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85(3):651–657

    PubMed  CAS  Google Scholar 

  27. Atsumi S, Wu TY, Machado IM et al (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    PubMed  Google Scholar 

  28. Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7:471

    PubMed  CAS  Google Scholar 

  29. Babiskin AH, Smolke CD (2011) Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules. Nucleic Acids Res 39(12):5299–5311

    Google Scholar 

  30. Babiskin AH, Smolke CD (2011) Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity. Nucleic Acids Res 39(19):8651–8664

    PubMed  CAS  Google Scholar 

  31. Badr HR, Toledo R, Hamdy MK (2001) Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass Bioenergy 20(2):119–132

    CAS  Google Scholar 

  32. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    CAS  Google Scholar 

  33. Barrett CL, Kim TY, Kim HU et al (2006) Systems biology as a foundation for genome-scale synthetic biology. Curr Opin Biotechnol 17(5):488–492

    PubMed  CAS  Google Scholar 

  34. Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98(13):7025–7028

    PubMed  CAS  Google Scholar 

  35. Bauer G, Suess B (2006) Engineered riboswitches as novel tools in molecular biology. J Biotechnol 124(1):4–11

    PubMed  CAS  Google Scholar 

  36. Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343

    PubMed  CAS  Google Scholar 

  37. Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    PubMed  CAS  Google Scholar 

  38. Bedford MR, Partridge GG (2010) Enzymes in farm animal nutrition, 2nd edn. In: Bedford M and Partridge G (eds) CABI, Wallingford, UK.

    Google Scholar 

  39. Beerli RR, Dreier B, Barbas CF 3rd (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500

    PubMed  CAS  Google Scholar 

  40. Bell PJ, Davies IW, Attfield PV (1999) Facilitating functional analysis of the Saccharomyces cerevisiae genome using an EGFP-based promoter library and flow cytometry. Yeast 15(16):1747–1759

    PubMed  CAS  Google Scholar 

  41. Benner SA (2004) Chemistry. Redesigning genetics. Science 306(5696):625–626

    PubMed  CAS  Google Scholar 

  42. Benthin S, Nielsen J, Villadsen J (1991) A simple and reliable method for the determination of cellular RNA content. Biotechnol Tech 5(1):39–42

    CAS  Google Scholar 

  43. Bergin J (2009) Synthetic biology: emerging global markets. BCC Research LLC, MA, USA.

    Google Scholar 

  44. Berrow NS, Bussow K, Coutard B et al (2006) Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1218–1226

    PubMed  Google Scholar 

  45. Bettiga M, Bengtsson O, Hahn-Hagerdal B et al (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40

    PubMed  Google Scholar 

  46. Bhatti HN, Hanif MA, Qasim M et al (2008) Biodiesel production from waste tallow. Fuel 87(2961–2966)

    Google Scholar 

  47. Bisht H, Chugh DA, Raje M et al (2002) Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. J Biotechnol 99(2):97–110

    PubMed  CAS  Google Scholar 

  48. Blancafort P, Magnenat L, Barbas CF 3rd (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21(3):269–274

    PubMed  CAS  Google Scholar 

  49. Boer E, Breuer FS, Weniger M et al (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92(1):105–114

    PubMed  Google Scholar 

  50. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222–227

    PubMed  CAS  Google Scholar 

  51. Bonetta L (2005) Prime time for real-time PCR. Nat Methods 2(4):305–312

    CAS  Google Scholar 

  52. Bordel S, Nielsen J (2010) Identification of flux control in metabolic networks using non-equilibrium thermodynamics. Metab Eng 12(4):369–377

    PubMed  CAS  Google Scholar 

  53. Branduardi P, Sauer M, De Gioia L et al (2006) Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb Cell Fact 5:4

    PubMed  Google Scholar 

  54. Branduardi P, Smeraldi C, Porro D (2008) Metabolically engineered yeasts: ‘potential’ industrial applications. J Mol Microbiol Biotechnol 15(1):31–40

    PubMed  CAS  Google Scholar 

  55. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311

    PubMed  CAS  Google Scholar 

  56. Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    PubMed  CAS  Google Scholar 

  57. Bro C, Knudsen S, Regenberg B et al (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472

    PubMed  CAS  Google Scholar 

  58. Bro C, Regenberg B, Forster J et al (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111

    PubMed  CAS  Google Scholar 

  59. Bulow L (1990) Preparation of artificial bifunctional enzymes by gene fusion. Biochem Soc Symp 57:123–133

    PubMed  CAS  Google Scholar 

  60. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    PubMed  CAS  Google Scholar 

  61. Buskirk AR, Landrigan A, Liu DR (2004) Engineering a ligand-dependent RNA transcriptional activator. Chem Biol 11(8):1157–1163

    PubMed  CAS  Google Scholar 

  62. Canelas AB, Harrison N, Fazio A et al (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145

    PubMed  Google Scholar 

  63. Carrier TA, Keasling JD (1997) Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5′ cassette system. Biotechnol Bioeng 55(3):577–580

    PubMed  CAS  Google Scholar 

  64. Carrier TA, Keasling JD (1999) Library of synthetic 5′ secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol Prog 15(1):58–64

    PubMed  CAS  Google Scholar 

  65. Chen HM, Neiman AM (2011) A conserved regulatory role for antisense RNA in meiotic gene expression in yeast. Curr Opin Microbiol 14(6):655–659

    PubMed  CAS  Google Scholar 

  66. Chen X, Nielsen KF, Borodina I et al (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    PubMed  CAS  Google Scholar 

  67. Cho MK, Magnus D, Caplan AL et al (1999) Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science 286(5447):2087, 2089–2090

    PubMed  CAS  Google Scholar 

  68. Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13 C flux analysis and metabolomics. FEMS Yeast Res 11(3):263–272

    PubMed  CAS  Google Scholar 

  69. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282–290

    PubMed  CAS  Google Scholar 

  70. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86(4):1155–1164

    PubMed  CAS  Google Scholar 

  71. Converti A, Perego P (2002) Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl Microbiol Biotechnol 59(2–3):303–309

    PubMed  CAS  Google Scholar 

  72. Corte L, Rellini P, Roscini L et al (2010) Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal Chim Acta 659(1–2):258–265

    PubMed  CAS  Google Scholar 

  73. Cox RS 3rd, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145

    PubMed  Google Scholar 

  74. Cvijovic M, Olivares-Hernandez R, Agren R et al (2010) BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38(Web Server):W144–W149

    PubMed  CAS  Google Scholar 

  75. Dada O, Ramsay L, Dickerson J et al (2010) Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system. Anal Bioanal Chem 397(8):3305–3310

    PubMed  CAS  Google Scholar 

  76. De Backer MD, Raponi M, Arndt GM (2002) RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr Opin Microbiol 5(3):323–329

    PubMed  Google Scholar 

  77. de Godoy LM, Olsen JV, Cox J et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254

    PubMed  Google Scholar 

  78. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87(5):1617–1631

    PubMed  Google Scholar 

  79. Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50(9):2239–2249

    CAS  Google Scholar 

  80. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117

    CAS  Google Scholar 

  81. Diamandis EP (2000) Sequencing with microarray technology–a powerful new tool for molecular diagnostics. Clin Chem 46(10):1523–1525

    PubMed  CAS  Google Scholar 

  82. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418(6894):222–228

    PubMed  CAS  Google Scholar 

  83. Drinnenberg IA, Weinberg DE, Xie KT et al (2009) RNAi in budding yeast. Science 326(5952):544–550

    PubMed  CAS  Google Scholar 

  84. Dueber JE, Mirsky EA, Lim WA (2007) Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat Biotechnol 25(6):660–662

    PubMed  CAS  Google Scholar 

  85. Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759

    PubMed  CAS  Google Scholar 

  86. Dueber JE, Yeh BJ, Bhattacharyya RP et al (2004) Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr Opin Struct Biol 14(6):690–699

    PubMed  CAS  Google Scholar 

  87. Edwards JR, Ruparel H, Ju J (2005) Mass-spectrometry DNA sequencing. Mutat Res/Fundam Mol Mech Mutagen 573(1–2):3–12

    CAS  Google Scholar 

  88. Elbeik T, Markowitz N, Nassos P et al (2004) Simultaneous runs of the Bayer VERSANT HIV-1 version 3.0 and HCV bDNA version 3.0 quantitative assays on the system 340 platform provide reliable quantitation and improved work flow. J Clin Microbiol 42(7):3120–3127

    PubMed  CAS  Google Scholar 

  89. Elbeik T, Surtihadi J, Destree M et al (2004) Multicenter evaluation of the performance characteristics of the bayer VERSANT HCV RNA 3.0 assay (bDNA). J Clin Microbiol 42(2):563–569

    PubMed  CAS  Google Scholar 

  90. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469

    PubMed  CAS  Google Scholar 

  91. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885

    PubMed  CAS  Google Scholar 

  92. Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27(5):465–471

    PubMed  CAS  Google Scholar 

  93. Ennis BM, Marshall CT, Maddox IS et al (1986) Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8(10):725–730

    CAS  Google Scholar 

  94. Enserink M (2005) Infectious diseases. Source of new hope against malaria is in short supply. Science 307(5706):33

    PubMed  CAS  Google Scholar 

  95. Escobar JC, Lora ES, Venturini OJ et al (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13(1275–1287)

    Google Scholar 

  96. Esener AA, Veerman T, Roels JA et al (1982) Modeling of bacterial growth; formulation and evaluation of a structured model. Biotechnol Bioeng 24(8):1749–1764

    PubMed  CAS  Google Scholar 

  97. Eyidogan M, Ozsezen AN, Canakci M et al (2010) Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel 89(10):2713–2720

    CAS  Google Scholar 

  98. Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697–1712

    PubMed  CAS  Google Scholar 

  99. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19(6):595–603

    CAS  Google Scholar 

  100. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63(6):653–658

    PubMed  CAS  Google Scholar 

  101. Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115(2):179–187

    PubMed  CAS  Google Scholar 

  102. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    PubMed  CAS  Google Scholar 

  103. Ezeji T, Qureshi N, Blaschek HP (2007) Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42(1):34–39

    CAS  Google Scholar 

  104. Fabrizio P, Abelson J (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250(4979):404–409

    PubMed  CAS  Google Scholar 

  105. Feng X, Page L, Rubens J et al (2010) Bridging the gap between fluxomics and industrial biotechnology. J Biomed Biotechnol 2010:460717

    PubMed  Google Scholar 

  106. Feng W, Raghuraman MK, Brewer BJ (2007) Mapping yeast origins of replication via single-stranded DNA detection. Methods 41(2):151–157

    PubMed  CAS  Google Scholar 

  107. Ferea TL, Bowman BJ (1996) The vacuolar ATPase of Neurospora crassa is indispensable: inactivation of the vma-1 gene by repeat-induced point mutation. Genetics 143(1):147–154

    PubMed  CAS  Google Scholar 

  108. Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    PubMed  CAS  Google Scholar 

  109. Finos L, Farcomeni A (2011) k-FWER control without p -value adjustment, with application to detection of genetic determinants of multiple sclerosis in Italian twins. Biometrics 67(1):174–181

    PubMed  CAS  Google Scholar 

  110. Fischer CR, Tseng HC, Tai M et al (2010) Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Appl Microbiol Biotechnol 88(1):265–275

    PubMed  CAS  Google Scholar 

  111. Gao H, Zhuo Y, Ashforth E et al (2010) Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites. Protein Cell 1(7):621–626

    PubMed  CAS  Google Scholar 

  112. Gaynor JW, Campbell BJ, Cosstick R (2010) RNA interference: a chemist’s perspective. Chem Soc Rev 39(11):4169–4184

    PubMed  CAS  Google Scholar 

  113. Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190–197

    PubMed  CAS  Google Scholar 

  114. Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2(3):372–382

    PubMed  CAS  Google Scholar 

  115. Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220

    PubMed  CAS  Google Scholar 

  116. Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    PubMed  CAS  Google Scholar 

  117. Giga-Hama Y, Tohda H, Takegawa K et al (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):147–155

    PubMed  CAS  Google Scholar 

  118. Gilmore JM, Washburn MP (2010) Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics 73(11):2078–2091

    PubMed  CAS  Google Scholar 

  119. Glass JI, Assad-Garcia N, Alperovich N et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103(2):425–430

    PubMed  CAS  Google Scholar 

  120. Glover III WR (2007) Systems and methods of analyzing nucleic acid polymers and related components. USA Patent

    Google Scholar 

  121. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(5287):546, 563–567

    PubMed  CAS  Google Scholar 

  122. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    PubMed  Google Scholar 

  123. Gowda M, Li H, Alessi J et al (2006) Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res 34(19):e126

    PubMed  Google Scholar 

  124. Graslund S, Sagemark J, Berglund H et al (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58(2):210–221

    PubMed  Google Scholar 

  125. Grate D, Wilson C (2001) Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 9(10):2565–2570

    PubMed  CAS  Google Scholar 

  126. Grossmann J, Roschitzki B, Panse C et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteomics 73(9):1740–1746

    PubMed  CAS  Google Scholar 

  127. Guadalupe Medina V, Almering MJ, van Maris AJ et al (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76(1):190–195

    PubMed  Google Scholar 

  128. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353

    PubMed  CAS  Google Scholar 

  129. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    PubMed  CAS  Google Scholar 

  130. Hahn-Hagerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    PubMed  Google Scholar 

  131. Hanlon SE, Rizzo JM, Tatomer DC et al (2011) The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6(4):e19060

    PubMed  CAS  Google Scholar 

  132. Harris LM, Desai RP, Welker NE et al (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11

    PubMed  CAS  Google Scholar 

  133. Hartner FS, Ruth C, Langenegger D et al (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36(12):e76

    PubMed  Google Scholar 

  134. Harvey I, Garneau P, Pelletier J (2002) Inhibition of translation by RNA-small molecule interactions. RNA 8(4):452–463

    PubMed  CAS  Google Scholar 

  135. Haseloff J, Ajioka J (2009) Synthetic biology: history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391

    PubMed  Google Scholar 

  136. Hasunuma T, Sanda T, Yamada R et al (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10(1):2

    PubMed  CAS  Google Scholar 

  137. Haubold B, Wiehe T (2004) Comparative genomics: methods and applications. Naturwissenschaften 91(9):405–421

    PubMed  CAS  Google Scholar 

  138. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5, Part 2. Academic Press, London, pp 209–344

    Google Scholar 

  139. Herrgard MJ, Fong SS, Palsson BO (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2(7):e72

    PubMed  Google Scholar 

  140. Hershey JWB, Mathews M, Sonenberg N et al (1996) Translational control, vol 30, Cold spring harbor monograph series. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  141. Hicks WM, Yamaguchi M, Haber JE (2011) Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci U S A 108(8):3108–3115

    PubMed  CAS  Google Scholar 

  142. Hoefnagel MH, Starrenburg MJ, Martens DE et al (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148(Pt 4):1003–1013

    PubMed  CAS  Google Scholar 

  143. Højer-Pedersen J, Smedsgaard J, Nielsen J (2008) The yeast metabolome addressed by electrospray ionization mass spectrometry: initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry. Metabolomics 4(4):393–405

    Google Scholar 

  144. Hong WK, Kim CH, Heo SY et al (2010) Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol Lett 32(8):1077–1082

    PubMed  CAS  Google Scholar 

  145. Hong WK, Kim CH, Heo SY et al (2011) 1,3-Propandiol production by engineered Hansenula polymorpha expressing dha genes from Klebsiella pneumoniae. Bioprocess Biosyst Eng 34(2):231–236

    PubMed  CAS  Google Scholar 

  146. Hong K-K, Vongsangnak W, Vemuri GN et al (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci U S A 108(29):12179–12184

    PubMed  CAS  Google Scholar 

  147. Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443

    PubMed  CAS  Google Scholar 

  148. Hu H, Qian J, Chu J et al (2009) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J Biotechnol 141(3–4):97–103

    PubMed  CAS  Google Scholar 

  149. Huang B, Guo J, Yi B et al (2008) Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett 30(7):1121–1137

    PubMed  CAS  Google Scholar 

  150. Huang WC, Ramey DE, Yang ST (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 113–116:887–898

    PubMed  Google Scholar 

  151. Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347

    PubMed  CAS  Google Scholar 

  152. Insenser MR, Hernáez ML, Nombela C et al (2010) Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics 73(6):1183–1195

    PubMed  CAS  Google Scholar 

  153. Inui M, Suda M, Kimura S et al (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316

    PubMed  CAS  Google Scholar 

  154. Isaacs FJ, Collins JJ (2005) Plug-and-play with RNA. Nat Biotechnol 23(3):306–307

    PubMed  CAS  Google Scholar 

  155. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24(5):545–554

    PubMed  CAS  Google Scholar 

  156. Isaacs FJ, Dwyer DJ, Ding C et al (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847

    PubMed  CAS  Google Scholar 

  157. Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272

    PubMed  CAS  Google Scholar 

  158. Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2(4):247–256

    PubMed  CAS  Google Scholar 

  159. Jarboe LR, Zhang X, Wang X et al (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042

    PubMed  Google Scholar 

  160. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    PubMed  CAS  Google Scholar 

  161. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87

    PubMed  CAS  Google Scholar 

  162. Jeppsson M, Johansson B, Jensen PR et al (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20(15):1263–1272

    PubMed  CAS  Google Scholar 

  163. Ji Y, Zhang B, Van SF et al (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293(5538):2266–2269

    PubMed  CAS  Google Scholar 

  164. Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291

    PubMed  CAS  Google Scholar 

  165. Jöbses IML, Egberts GTC, van Baalen A et al (1985) Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35 °C. Biotechnol Bioeng 27(7):984–995

    PubMed  Google Scholar 

  166. Juneau K, Palm C, Miranda M et al (2007) High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc Natl Acad Sci U S A 104(5):1522–1527

    PubMed  CAS  Google Scholar 

  167. Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93(24):13770–13773

    PubMed  CAS  Google Scholar 

  168. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76

    PubMed  CAS  Google Scholar 

  169. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358

    PubMed  CAS  Google Scholar 

  170. Khongto B, Laoteng K, Tongta A (2010) Fermentation process development of recombinant Hansenula polymorpha for gamma-linolenic acid production. J Microbiol Biotechnol 20(11):1555–1562

    PubMed  CAS  Google Scholar 

  171. Kim DS, Gusti V, Pillai SG et al (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11(11):1667–1677

    PubMed  CAS  Google Scholar 

  172. Kim I-K, Roldão A, Siewers V et al (2011) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12(2):228–248

    Google Scholar 

  173. Kim SH, Shin DH, Liu J et al (2005) Structural genomics of minimal organisms and protein fold space. J Struct Funct Genomics 6(2–3):63–70

    PubMed  CAS  Google Scholar 

  174. Kind S, Jeong WK, Schroder H et al (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180

    PubMed  CAS  Google Scholar 

  175. Kirpekar F, Nordhoff E, Larsen LK et al (1998) DNA sequence analysis by MALDI mass spectrometry. Nucleic Acids Res 26(11):2554–2559

    PubMed  CAS  Google Scholar 

  176. Kitney RI (2007) Synthetic biology – engineering biologically-based devices and systems. In: IFMBE proceedings. Springer, Berlin/Heidelberg, pp 1138–1139

    Google Scholar 

  177. Klimacek M, Krahulec S, Sauer U et al (2010) Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76(22):7566–7574

    PubMed  CAS  Google Scholar 

  178. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1–3):13–20

    PubMed  CAS  Google Scholar 

  179. Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–4683

    PubMed  CAS  Google Scholar 

  180. Koonin E (2000) How many genes can make a cell: the minimal-gene-Set concept. Annu Rev Genomics Hum Genet 1:18

    Google Scholar 

  181. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–136

    PubMed  CAS  Google Scholar 

  182. Kotter P, Weigand JE, Meyer B et al (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37(18):e120

    PubMed  Google Scholar 

  183. Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276

    PubMed  CAS  Google Scholar 

  184. Kümmel A, Ewald JC, Fendt S-M et al (2010) Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res 10(3):322–332

    PubMed  Google Scholar 

  185. Kuyper M, Toirkens MJ, Diderich JA et al (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934

    PubMed  CAS  Google Scholar 

  186. Kvitek DJ, Sherlock G (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7(4)

    Google Scholar 

  187. Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288–290

    PubMed  CAS  Google Scholar 

  188. Larbi NB, Jefferies C (2009) 2D-DIGE: comparative proteomics of cellular signalling pathways. Methods Mol Biol 517:105–132

    PubMed  Google Scholar 

  189. Lee SM, Cho MO, Park CH et al (2008) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuel 22(5):3459–3464

    CAS  Google Scholar 

  190. Lee S, Kim P-J, Jeong H (2011) Global organization of protein complexome in the yeast Saccharomyces cerevisiae. BMC Syst Biol 5(1):126

    PubMed  CAS  Google Scholar 

  191. Lee SJ, Lee DY, Kim TY et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71(12):7880–7887

    PubMed  CAS  Google Scholar 

  192. Lee DK, Park JW, Kim YJ et al (2003) Toward a functional annotation of the human genome using artificial transcription factors. Genome Res 13(12):2708–2716

    PubMed  CAS  Google Scholar 

  193. Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

    PubMed  CAS  Google Scholar 

  194. Lefrancois P, Euskirchen G, Auerbach R et al (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10(1):37

    PubMed  Google Scholar 

  195. Leon C, Garcia-Canas V, Gonzalez R et al (2011) Fast and sensitive detection of genetically modified yeasts in wine. J Chromatogr A 1218(42):7550–7556

    PubMed  CAS  Google Scholar 

  196. Liew ST, Arbakariya A, Rosfarizan M et al (2006) Production of solvent (acetone-butanol-ethanol) in continuous fermentation by clostridium saccharobutylicum DSM 13864 using gelatinised sago starch as a carbon source. Malays J Microbiol 2(2):42–50

    Google Scholar 

  197. Liu L, Agren R, Bordel S et al (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584(12):2556–2564

    PubMed  CAS  Google Scholar 

  198. Liu S, Bischoff KM, Qureshi N et al (2010) Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 27(4):283–288

    PubMed  Google Scholar 

  199. Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48(2):204–210

    CAS  Google Scholar 

  200. Liu H, Liu K, Yan M et al (2011) GTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol 164(7):1150–1159

    PubMed  CAS  Google Scholar 

  201. Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16(1):19–25

    PubMed  Google Scholar 

  202. Liu H, Yan M, Lai C et al (2010) gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 160(2):574–582

    PubMed  CAS  Google Scholar 

  203. Lombardi A, Bursomanno S, Lopardo T et al (2010) Pichia pastoris as a host for secretion of toxic saporin chimeras. FASEB J 24(1):253–265

    PubMed  Google Scholar 

  204. Lorenz A, Fuchs J, Trelles-Sticken E et al (2002) Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae x S. paradoxus hybrids. J Cell Sci 115(Pt 19):3829–3835

    PubMed  CAS  Google Scholar 

  205. Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73(19):6072–6077

    PubMed  CAS  Google Scholar 

  206. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101(4):647–653

    PubMed  CAS  Google Scholar 

  207. Lynch SA, Desai SK, Sajja HK et al (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14(2):173–184

    PubMed  CAS  Google Scholar 

  208. Lynch M, Sung W, Morris K et al (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105(27):9272–9277

    PubMed  CAS  Google Scholar 

  209. Ma M, Liu L (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10(1):169

    PubMed  Google Scholar 

  210. Madsen KM, Udatha GD, Semba S et al (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763

    PubMed  CAS  Google Scholar 

  211. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340

    PubMed  CAS  Google Scholar 

  212. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    PubMed  CAS  Google Scholar 

  213. Malmstrom J, Beck M, Schmidt A et al (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460(7256):762–765

    PubMed  Google Scholar 

  214. Marchisio MA, Rudolf F (2011) Synthetic biosensing systems. Int J Biochem Cell Biol 43(3):310–319

    PubMed  CAS  Google Scholar 

  215. Martins FS, Elian SDA, Vieira AT et al (2011) Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol 301(4):359–364

    PubMed  Google Scholar 

  216. Matsuda F, Furusawa C, Kondo T et al (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 10:70

    PubMed  CAS  Google Scholar 

  217. Matsuda T, Kigawa T, Koshiba S et al (2006) Cell-free synthesis of zinc-binding proteins. J Struct Funct Genomics 7(2):93–100

    PubMed  CAS  Google Scholar 

  218. Mellado MC, Peixoto C, Cruz PE et al (2008) Purification of recombinant rotavirus VP7 glycoprotein for the study of in vitro rotavirus-like particles assembly. J Chromatogr B Analyt Technol Biomed Life Sci 874(1–2):89–94

    PubMed  CAS  Google Scholar 

  219. Meng F, Cargile BJ, Patrie SM et al (2002) Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal Chem 74(13):2923–2929

    PubMed  CAS  Google Scholar 

  220. Mermelstein LD, Papoutsakis ET, Petersen DJ et al (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioeng 42(9):1053–1060

    PubMed  CAS  Google Scholar 

  221. Merritt J, DiTonno JR, Mitra RD et al (2003) Parallel competition analysis of Saccharomyces cerevisiae strains differing by a single base using polymerase colonies. Nucleic Acids Res 31(15):e84

    PubMed  Google Scholar 

  222. Miclet E, Stoven V, Michels PAM et al (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem 276(37):34840–34846

    PubMed  CAS  Google Scholar 

  223. Mignone F, Gissi C, Liuni S et al (2002) Untranslated regions of mRNAs. Genome Biol 3(3):REVIEWS0004

    PubMed  Google Scholar 

  224. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6(20):5385–5408

    PubMed  CAS  Google Scholar 

  225. Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457(7228):413–420

    PubMed  CAS  Google Scholar 

  226. Morimoto T, Kadoya R, Endo K et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15(2):73–81

    PubMed  CAS  Google Scholar 

  227. Murakami K, Tao E, Ito Y et al (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75(3):589–597

    PubMed  CAS  Google Scholar 

  228. Murphy KF, Balazsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 104(31):12726–12731

    PubMed  CAS  Google Scholar 

  229. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93(19):10268–10273

    PubMed  CAS  Google Scholar 

  230. Mutschlechner O, Swoboda H, Gapes JR (2000) Continuous two-stage ABE-fermentation using Clostridium beijerinckii NRRL B592 operating with a growth rate in the first stage vessel close to its maximal value. J Mol Microbiol Biotechnol 2(1):101–105

    PubMed  CAS  Google Scholar 

  231. Na D, Kim TY, Lee SY (2010) Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol 13(3):363–370

    PubMed  CAS  Google Scholar 

  232. Nagar B, Hantschel O, Young MA et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112(6):859–871

    PubMed  CAS  Google Scholar 

  233. Nair RV, Green EM, Watson DE et al (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181(1):319–330

    PubMed  CAS  Google Scholar 

  234. Namjoshi AA, Hu WS, Ramkrishna D (2003) Unveiling steady-state multiplicity in hybridoma cultures: the cybernetic approach. Biotechnol Bioeng 81(1):80–91

    PubMed  CAS  Google Scholar 

  235. Napoli F, Olivieri G, Russo ME et al (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol 37(6):603–608

    PubMed  CAS  Google Scholar 

  236. Ndukum J, Fonseca LL, Santos H et al (2011) Statistical inference methods for sparse biological time series data. BMC Syst Biol 5:57

    PubMed  Google Scholar 

  237. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

    PubMed  CAS  Google Scholar 

  238. Nevoigt E, Fischer C, Mucha O et al (2007) Engineering promoter regulation. Biotechnol Bioeng 96(3):550–558

    PubMed  CAS  Google Scholar 

  239. Nevoigt E, Kohnke J, Fischer CR et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72(8):5266–5273

    PubMed  CAS  Google Scholar 

  240. Ng P, Tan JJ, Ooi HS et al (2006) Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res 34(12):e84

    PubMed  Google Scholar 

  241. Ng P, Wei CL, Sung WK et al (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2(2):105–111

    PubMed  CAS  Google Scholar 

  242. Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131

    PubMed  CAS  Google Scholar 

  243. Nielsen KL, Hogh AL, Emmersen J (2006) DeepSAGE–digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34(19):e133

    PubMed  Google Scholar 

  244. Nielsen DR, Leonard E, Yoon SH et al (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4–5):262–273

    PubMed  CAS  Google Scholar 

  245. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37(1):52–68

    Google Scholar 

  246. Norbeck J, Påhlman A-K, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from saccharomyces cerevisiae. J Biol Chem 271(23):13875–13881

    PubMed  CAS  Google Scholar 

  247. Olivares-Hernandez R, Bordel S, Nielsen J (2011) Codon usage variability determines the correlation between proteome and transcriptome fold changes. BMC Syst Biol 5:33

    PubMed  CAS  Google Scholar 

  248. Olivares-Hernández R, Usaite R, Nielsen J (2010) Integrative analysis using proteome and transcriptome data from yeast to unravel regulatory patterns at post-transcriptional level. Biotechnol Bioeng 107(5):865–875

    PubMed  Google Scholar 

  249. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    PubMed  CAS  Google Scholar 

  250. Otero JM, Olsson L, Nielsen J (2007) Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production. J Biotechnol 131(2, Supplement):S205

    Google Scholar 

  251. Otero JM, Vongsangnak W, Asadollahi MA et al (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723

    PubMed  Google Scholar 

  252. Papworth M, Kolasinska P, Minczuk M (2006) Designer zinc-finger proteins and their applications. Gene 366(1):27–38

    PubMed  CAS  Google Scholar 

  253. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31

    PubMed  CAS  Google Scholar 

  254. Pardo C, Hoose SA, Pondugula S et al (2009) DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 523:41–65

    PubMed  CAS  Google Scholar 

  255. Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme Microb Technol 10(11):660–668

    CAS  Google Scholar 

  256. Park KS, Kim JS (2006) Engineering of GAL1 promoter-driven expression system with artificial transcription factors. Biochem Biophys Res Commun 351(2):412–417

    PubMed  CAS  Google Scholar 

  257. Park JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 27(6):979–988

    PubMed  Google Scholar 

  258. Park JH, Kim TY, Lee KH et al (2011) Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946

    PubMed  CAS  Google Scholar 

  259. Park KS, Lee DK, Lee H et al (2003) Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21(10):1208–1214

    PubMed  CAS  Google Scholar 

  260. Park CH, Okos MR, Wankat PC (1989) Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor. Biotechnol Bioeng 34(1):18–29

    PubMed  CAS  Google Scholar 

  261. Park KS, Seol W, Yang HY et al (2005) Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells. Biotechnol Prog 21(3):664–670

    PubMed  CAS  Google Scholar 

  262. Partow S, Siewers V, Bjorn S et al (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964

    PubMed  CAS  Google Scholar 

  263. Pavlik P, Simon M, Schuster T et al (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24(1–2):21–25

    PubMed  CAS  Google Scholar 

  264. Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23(6):455–464

    PubMed  CAS  Google Scholar 

  265. Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032

    PubMed  CAS  Google Scholar 

  266. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376

    PubMed  CAS  Google Scholar 

  267. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8(1):1–13

    PubMed  CAS  Google Scholar 

  268. Phugare S, Patil P, Govindwar S et al (2010) Exploitation of yeast biomass generated as a waste product of distillery industry for remediation of textile industry effluent. Int Biodeter Biodegr 64(8):716–726

    CAS  Google Scholar 

  269. Posfai G, Plunkett G 3rd, Feher T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046

    PubMed  CAS  Google Scholar 

  270. Price JV, Cech TR (1985) Coupling of Tetrahymena ribosomal RNA splicing to beta-galactosidase expression in Escherichia coli. Science 228(4700):719–722

    PubMed  CAS  Google Scholar 

  271. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25

    PubMed  Google Scholar 

  272. Quek LE, Wittmann C, Nielsen LK et al (2009) OpenFLUX: efficient modelling software for 13 C-based metabolic flux analysis. Microb Cell Fact 8:25

    PubMed  Google Scholar 

  273. Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27(5):287–291

    PubMed  CAS  Google Scholar 

  274. Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99(13):5915–5922

    PubMed  CAS  Google Scholar 

  275. Qureshi N, Li X-L, Hughes S et al (2006) Butanol production from corn fiber xylan using clostridium acetobutylicum. Biotechnol Prog 22(3):673–680

    PubMed  CAS  Google Scholar 

  276. Qureshi N, Maddox IS (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of clostridium-acetobutylicum and integration with product removal by liquid-liquid-extraction. J Ferment Bioeng 80(2):185–189

    CAS  Google Scholar 

  277. Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II–Fed-batch fermentation. Biomass Bioenergy 32(2):176–183

    CAS  Google Scholar 

  278. Qureshi N, Saha BC, Dien B et al (2010) Production of butanol (a biofuel) from agricultural residues: part I - use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565

    CAS  Google Scholar 

  279. Qureshi N, Saha BC, Hector RE et al (2010) Production of butanol (a biofuel) from agricultural residues: part II - use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34(4):566–571

    CAS  Google Scholar 

  280. Ramon A, Marin M (2011) Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 6(6):700–706

    PubMed  CAS  Google Scholar 

  281. Raspor P, Zupan J, ČAdeŽ N (2007) Validation of yeast identification by in Silico Rflp. J Rapid Methods Autom Microbiol 15(3):267–281

    CAS  Google Scholar 

  282. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80(1):27–43

    PubMed  CAS  Google Scholar 

  283. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45(4):490–511

    PubMed  CAS  Google Scholar 

  284. Redding-Johanson AM, Batth TS, Chan R et al (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13(2):194–203

    PubMed  CAS  Google Scholar 

  285. Ren B, Robert F, Wyrick J et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309

    PubMed  CAS  Google Scholar 

  286. Reschiglian P, Moon MH (2008) Flow field-flow fractionation: a pre-analytical method for proteomics. J Proteomics 71(3):265–276

    PubMed  CAS  Google Scholar 

  287. Rinaudo K, Bleris L, Maddamsetti R et al (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25(7):795–801

    PubMed  CAS  Google Scholar 

  288. Ro DK, Ouellet M, Paradise EM et al (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83

    PubMed  Google Scholar 

  289. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    PubMed  CAS  Google Scholar 

  290. Roepstorff P (1997) Mass spectrometry in protein studies from genome to function. Curr Opin Biotechnol 8(1):6–13

    PubMed  CAS  Google Scholar 

  291. Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242(1):84–89

    PubMed  CAS  Google Scholar 

  292. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    PubMed  CAS  Google Scholar 

  293. Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52(5):1183–1185

    PubMed  CAS  Google Scholar 

  294. Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen 9(4):247–257

    PubMed  CAS  Google Scholar 

  295. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333(6047):1248–1252

    PubMed  CAS  Google Scholar 

  296. Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89(6):831–838

    PubMed  CAS  Google Scholar 

  297. Saito H, Inoue T (2009) Synthetic biology with RNA motifs. Int J Biochem Cell Biol 41(2):398–404

    PubMed  CAS  Google Scholar 

  298. Salusjarvi L, Kankainen M, Soliymani R et al (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18

    PubMed  Google Scholar 

  299. Sampaio PN, Sousa L, Calado CRC et al (2011) Use of chemometrics in the selection of a Saccharomyces cerevisiae expression system for recombinant cyprosin B production. Biotechnol Lett 33(11):2111–2119

    PubMed  CAS  Google Scholar 

  300. Sanda T, Hasunuma T, Matsuda F et al (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol 102(17):7917–7924

    PubMed  CAS  Google Scholar 

  301. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    PubMed  CAS  Google Scholar 

  302. Sansonetti S, Hobley TJ, Calabro V et al (2011) A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study. Bioresour Technol 102(16):7513–7520

    PubMed  CAS  Google Scholar 

  303. Satyanarayana T, Kunze G (2009) Yeast biotechnology: diversity and applications. Springer, Dordrecht

    Google Scholar 

  304. Schilling CH, Edwards JS, Letscher D et al (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71(4):286–306

    PubMed  CAS  Google Scholar 

  305. Schmidt M (2009) Synthetic biology: the technoscience and its societal consequences. Springer, Dordrecht/New York

    Google Scholar 

  306. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75

    PubMed  CAS  Google Scholar 

  307. Seino A, Yanagida Y, Aizawa M et al (2005) Translational control by internal ribosome entry site in Saccharomyces cerevisiae. Biochim Biophys Acta 1681(2–3):166–174

    PubMed  CAS  Google Scholar 

  308. Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61(7–8):513–526

    PubMed  CAS  Google Scholar 

  309. Shen CR, Lan EI, Dekishima Y et al (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915

    PubMed  CAS  Google Scholar 

  310. Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100(26):15776–15781

    PubMed  CAS  Google Scholar 

  311. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102(21):7695–7700

    PubMed  CAS  Google Scholar 

  312. Sillers R, Chow A, Tracy B et al (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10(6):321–332

    PubMed  CAS  Google Scholar 

  313. Skotheim RI, Thomassen GO, Eken M et al (2009) A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 8:5

    PubMed  Google Scholar 

  314. Smith LM, Sanders JZ, Kaiser RJ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679

    PubMed  CAS  Google Scholar 

  315. Smolke CD, Carrier TA, Keasling JD (2000) Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl Environ Microbiol 66(12):5399–5405

    PubMed  CAS  Google Scholar 

  316. Smolke CD, Keasling JD (2002) Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 80(7):762–776

    PubMed  CAS  Google Scholar 

  317. Steen EJ, Chan R, Prasad N et al (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    PubMed  Google Scholar 

  318. Sterner R, Merkl R, Raushel FM (2008) Computational design of enzymes. Chem Biol 15(5):421–423

    PubMed  CAS  Google Scholar 

  319. Storey JD, Tibshirani R (2003) Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 224:149–157

    PubMed  CAS  Google Scholar 

  320. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    PubMed  CAS  Google Scholar 

  321. Suen WC, Zhang N, Xiao L et al (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17(2):133–140

    PubMed  CAS  Google Scholar 

  322. Suess B, Hanson S, Berens C et al (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res 31(7):1853–1858

    PubMed  CAS  Google Scholar 

  323. Suzuki N, Nonaka H, Tsuge Y et al (2005) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69(2):151–161

    PubMed  CAS  Google Scholar 

  324. Syed QUA, Nadeem M, Nelofer R (2008) Enhanced butanol production by mutant strains of clostridium acetobutylicum in molasses medium. Turk J Biochem 33(1):25–30

    CAS  Google Scholar 

  325. SynBERC. http://64.13.253.69/parts

  326. Tang WL, Zhao H (2009) Industrial biotechnology: tools and applications. Biotechnol J 4(12):1725–1739

    PubMed  CAS  Google Scholar 

  327. Tashiro Y, Shinto H, Hayashi M et al (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240

    PubMed  CAS  Google Scholar 

  328. Tashiro Y, Takeda K, Kobayashi G et al (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268

    PubMed  CAS  Google Scholar 

  329. Teixeira AP, Portugal CA, Carinhas N et al (2009) In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 102(4):1098–1106

    PubMed  CAS  Google Scholar 

  330. Teixeira MC, Raposo LR, Mira NP et al (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761–5772

    PubMed  CAS  Google Scholar 

  331. Ten years of synergy (2010) Nature 463(7279):269–270

    Google Scholar 

  332. Thompson SR, Gulyas KD, Sarnow P (2001) Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 98(23):12972–12977

    PubMed  CAS  Google Scholar 

  333. Tobe VO, Taylor SL, Nickerson DA (1996) Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res 24(19):3728–3732

    PubMed  CAS  Google Scholar 

  334. Tochigi Y, Sato N, Sahara T et al (2010) Sensitive and convenient yeast reporter assay for high-throughput analysis by using a secretory luciferase from Cypridina noctiluca. Anal Chem 82(13):5768–5776

    PubMed  CAS  Google Scholar 

  335. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    PubMed  CAS  Google Scholar 

  336. Topp S, Reynoso CM, Seeliger JC et al (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76(23):7881–7884

    PubMed  CAS  Google Scholar 

  337. Toussaint M, Wellinger RJ, Conconi A (2010) Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutat Res/Genet Toxicol Environ Mutagen 698(1–2):52–59

    CAS  Google Scholar 

  338. Ubiyvovk VM, Ananin VM, Malyshev AY et al (2011) Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11:8

    PubMed  CAS  Google Scholar 

  339. Usaite R, Jewett MC, Oliveira AP et al (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5:319

    PubMed  Google Scholar 

  340. van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L et al (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15(7):256–263

    PubMed  Google Scholar 

  341. van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31(1):87–106

    PubMed  Google Scholar 

  342. Van Der Westhuizen A, Jones DT, Woods DR (1982) Autolytic Activity and Butanol Tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44(6):1277–1281

    Google Scholar 

  343. van Dijk EL, Chen CL, d/’Aubenton-Carafa Y et al (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117

    PubMed  Google Scholar 

  344. Velculescu VE, Zhang L, Zhou W et al (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251

    PubMed  CAS  Google Scholar 

  345. Vieira HL, Estevao C, Roldao A et al (2005) Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production. J Biotechnol 120(1):72–82

    PubMed  CAS  Google Scholar 

  346. Villas-Boas SG, Moxley JF, Akesson M et al (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388(Pt 2):669–677

    PubMed  CAS  Google Scholar 

  347. Wang Y, Chu J, Zhuang Y et al (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27(6):989–995

    PubMed  CAS  Google Scholar 

  348. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    PubMed  CAS  Google Scholar 

  349. Watanabe S, Abu Saleh A, Pack SP et al (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153(Pt 9):3044–3054

    PubMed  CAS  Google Scholar 

  350. Watanabe S, Kodaki T, Makino K (2004) Various mutations by using yeast gene for protein engineering. Nucleic Acids Symp Ser 48:197–198

    Google Scholar 

  351. Watanabe S, Saleh AA, Pack SP et al (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP + -dependent xylitol dehydrogenase. J Biotechnol 130(3):316–319

    PubMed  CAS  Google Scholar 

  352. Weiss B, Davidkova G, Zhou LW (1999) Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci 55(3):334–358

    PubMed  CAS  Google Scholar 

  353. Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282(5387):296–298

    PubMed  CAS  Google Scholar 

  354. Westers H, Dorenbos R, van Dijl JM et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20(12):2076–2090

    PubMed  CAS  Google Scholar 

  355. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    PubMed  CAS  Google Scholar 

  356. Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99(25):15908–15913

    PubMed  CAS  Google Scholar 

  357. Winkler WC, Nahvi A, Roth A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428(6980):281–286

    PubMed  CAS  Google Scholar 

  358. Winston F (2001) EMS and UV Mutagenesis in Yeast. Curr Protoc Mol Biol. Wiley

    Google Scholar 

  359. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    PubMed  CAS  Google Scholar 

  360. Wisselink HW, Toirkens MJ, Wu Q et al (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914

    PubMed  CAS  Google Scholar 

  361. Wolf JJ, Dowell RD, Mahony S et al (2010) Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 185(2):513–522

    PubMed  CAS  Google Scholar 

  362. Wright J, Bellissimi E, de Hulster E et al (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11:299–306

    PubMed  CAS  Google Scholar 

  363. Wu L, Mashego MR, van Dam JC et al (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13 C-labeled cell extracts as internal standards. Anal Biochem 336(2):164–171

    PubMed  CAS  Google Scholar 

  364. Wu D, Wang Q, Assary RS et al (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51(7):1634–1647

    PubMed  CAS  Google Scholar 

  365. Xia M, Farkas T, Jiang X (2007) Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J Med Virol 79(1):74–83

    PubMed  CAS  Google Scholar 

  366. Xia X, Holcik M (2009) Strong eukaryotic IRESs have weak secondary structure. PLoS One 4(1):1–3

    Google Scholar 

  367. Yazawa H, Kamisaka Y, Kimura K et al (2011) Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl Microbiol Biotechnol 91(6):1593–1600

    PubMed  CAS  Google Scholar 

  368. Yen L, Svendsen J, Lee JS et al (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431(7007):471–476.

    PubMed  CAS  Google Scholar 

  369. Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24

    PubMed  Google Scholar 

  370. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686–699

    PubMed  CAS  Google Scholar 

  371. Yu KO, Jung J, Kim SW et al (2011) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109(1):110–115

    PubMed  Google Scholar 

  372. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13 C-flux analysis. Curr Opin Microbiol 12(5):553–558

    PubMed  CAS  Google Scholar 

  373. Zarif BR, Azin M, Amirmozafari N (2011) Increasing the bioethanol yield in the presence of furfural via mutation of a native strain of Saccharomyces cerevisiae. Afr J Microbiol Res 5(6):651–656

    Google Scholar 

  374. Zhang L, Chang S, Wang J (2010) How to make a minimal genome for synthetic minimal cell. Protein Cell 1(5):8

    Google Scholar 

  375. Zhang L, Chang S, Wang J (2011) Synthetic biology: from the first synthetic cell to see its current situation and future development. Chinese Sci Bull 56(3):9

    Google Scholar 

  376. Zhang J, Lau MW, Ferre-D’Amare AR (2010) Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49(43):9123–9131

    PubMed  CAS  Google Scholar 

  377. Zhang Y, Thiele I, Weekes D et al (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325(5947):1544–1549

    PubMed  CAS  Google Scholar 

  378. Zhang J, Vaga S, Chumnanpuen P et al (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:545

    PubMed  Google Scholar 

  379. Zhang J, Vemuri G, Nielsen J (2010) Systems biology of energy homeostasis in yeast. Curr Opin Microbiol 13(3):382–388

    PubMed  CAS  Google Scholar 

  380. Zhang Y, Yu Z, Xin L et al (2010) Expression of the hemagglutinin and neuramidinase gene of influenza A virus H1N1 in Pichia methanolica. Sheng Wu Gong Cheng Xue Bao 26(8):1068–1073

    PubMed  CAS  Google Scholar 

  381. Zhao L, Wang J, Zhou J et al (2011) Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production. Wei Sheng Wu Xue Bao 51(1):50–58

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the EU Framework VII project SYSINBIO (www.sysbio.se/sysinbio), the European Research Council, Knut and Alice Wallenberg Foundation and the Chalmers foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roldão, A., Kim, IK., Nielsen, J. (2012). Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology. In: Wittmann, C., Lee, S. (eds) Systems Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4534-6_9

Download citation

Publish with us

Policies and ethics