Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology


Metabolic engineering, defined as the practice of manipulating cells’ genetic and regulatory processes for improving cellular performance, has been recently integrating systems and synthetic biology with other technologies, e.g. molecular biology, physiology, biochemistry, analysis science, bioinformatics and biochemical engineering. The aim is to surmount cells’ performance-related limitations, e.g. metabolic limitation of cellular processes, network rigidity and global regulation, in a comprehensive, rational and high-throughput manner. Using this multi-level/integrated approach, the (re)design and (re)construction of microbial systems for the development of novel products with significant impact on current global problems, e.g. depletion of energy resources and global warming, is becoming a reality.

In the last two decades, technological platforms for systems biology, e.g. genomics, transcriptomics, proteomics, metabolomics and fluxomics, and synthetic biology approaches, e.g. synthetic biological parts, devices and systems, have been implemented and efficiently used as tools for metabolic engineering of high-value bioproducts. One successful story on how metabolic engineering has been used to enhance the synthesis of microbial-based molecules is the production of biofuels. In this review, synthetic and systems biology technologies for yeast metabolic engineering will be described in detail. In addition, two case studies related with biofuel production (ethanol and 1-butanol) in yeast S. cerevisiae will be presented.


Systems biology Genomics Metabolomics Fluxomics Proteomics Transcriptomics Illumina sequencing Microarrays RNAseq Data mining Genome-scale metabolic models Synthetic biology Targeted gene expression Multi-gene assembly Synthetic pathway Promoter libraries Riboregulators Riboswitches Ribozymes Protein scaffolds Promoter shuffling Promoter binding proteins Antisense RNA Metabolic engineering Yeast Saccharomyces cerevisiae Industrial biotechnology High-value bioproducts Renewable resources Biofuels Ethanol Butanol 



The authors acknowledge the financial support received from the EU Framework VII project SYSINBIO (, the European Research Council, Knut and Alice Wallenberg Foundation and the Chalmers foundation.


  1. 1.
    Abad S, Nahalka J, Winkler M et al (2011) High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris. Biotechnol Lett 33(3):557–563PubMedGoogle Scholar
  2. 2.
    Adams M, Kelley J, Gocayne J et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656PubMedGoogle Scholar
  3. 3.
    Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271Google Scholar
  4. 4.
    Akao T, Yashiro I, Hosoyama A et al (2011) Whole-genome sequencing of sake yeast saccharomyces cerevisiae Kyokai no. 7. DNA Res 18:423–434PubMedGoogle Scholar
  5. 5.
    Albermann C (2011) High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli. Biotechnol Lett 33(2):313–319PubMedGoogle Scholar
  6. 6.
    Albertsen L, Chen Y, Bach LS et al (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033–1040PubMedGoogle Scholar
  7. 7.
    Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349Google Scholar
  8. 8.
    Alper H, Fischer C, Nevoigt E et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683PubMedGoogle Scholar
  9. 9.
    Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedGoogle Scholar
  10. 10.
    Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267PubMedGoogle Scholar
  11. 11.
    Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7(10):715–723PubMedGoogle Scholar
  12. 12.
    Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74(12):5350–5354PubMedGoogle Scholar
  13. 13.
    Andreas B (2011) Improving on nature’s enzymes. Chemistry & Industry Magazine, vol 5. The Society of Chemical Industry (SCI), WileyGoogle Scholar
  14. 14.
    Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35PubMedGoogle Scholar
  15. 15.
    Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9(3):277–292PubMedGoogle Scholar
  16. 16.
    Ara K, Ozaki K, Nakamura K et al (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46(Pt 3):169–178PubMedGoogle Scholar
  17. 17.
    Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250PubMedGoogle Scholar
  18. 18.
    Asada H, Uemura T, Yurugi-Kobayashi T et al (2011) Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 10:24PubMedGoogle Scholar
  19. 19.
    Asadollahi MA, Maury J, Moller K et al (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677PubMedGoogle Scholar
  20. 20.
    Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328–334PubMedGoogle Scholar
  21. 21.
    Ashengroph M, Nahvi I, Zarkesh-Esfahani H et al (2011) Candida galli strain PGO6: a novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. Curr Microbiol 62(3):990–998PubMedGoogle Scholar
  22. 22.
    Askenazi M, Driggers EM, Holtzman DA et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21(2):150–156PubMedGoogle Scholar
  23. 23.
    Atkins D, Gerlach WL (1994) Artificial ribozyme and antisense gene expression in Saccharomyces cerevisiae. Antisense Res Dev 4(2):109–117PubMedGoogle Scholar
  24. 24.
    Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311PubMedGoogle Scholar
  25. 25.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180PubMedGoogle Scholar
  26. 26.
    Atsumi S, Wu TY, Eckl EM et al (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85(3):651–657PubMedGoogle Scholar
  27. 27.
    Atsumi S, Wu TY, Machado IM et al (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449PubMedGoogle Scholar
  28. 28.
    Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7:471PubMedGoogle Scholar
  29. 29.
    Babiskin AH, Smolke CD (2011) Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules. Nucleic Acids Res 39(12):5299–5311Google Scholar
  30. 30.
    Babiskin AH, Smolke CD (2011) Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity. Nucleic Acids Res 39(19):8651–8664PubMedGoogle Scholar
  31. 31.
    Badr HR, Toledo R, Hamdy MK (2001) Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass Bioenergy 20(2):119–132Google Scholar
  32. 32.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875Google Scholar
  33. 33.
    Barrett CL, Kim TY, Kim HU et al (2006) Systems biology as a foundation for genome-scale synthetic biology. Curr Opin Biotechnol 17(5):488–492PubMedGoogle Scholar
  34. 34.
    Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98(13):7025–7028PubMedGoogle Scholar
  35. 35.
    Bauer G, Suess B (2006) Engineered riboswitches as novel tools in molecular biology. J Biotechnol 124(1):4–11PubMedGoogle Scholar
  36. 36.
    Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343PubMedGoogle Scholar
  37. 37.
    Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738PubMedGoogle Scholar
  38. 38.
    Bedford MR, Partridge GG (2010) Enzymes in farm animal nutrition, 2nd edn. In: Bedford M and Partridge G (eds) CABI, Wallingford, UK.Google Scholar
  39. 39.
    Beerli RR, Dreier B, Barbas CF 3rd (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500PubMedGoogle Scholar
  40. 40.
    Bell PJ, Davies IW, Attfield PV (1999) Facilitating functional analysis of the Saccharomyces cerevisiae genome using an EGFP-based promoter library and flow cytometry. Yeast 15(16):1747–1759PubMedGoogle Scholar
  41. 41.
    Benner SA (2004) Chemistry. Redesigning genetics. Science 306(5696):625–626PubMedGoogle Scholar
  42. 42.
    Benthin S, Nielsen J, Villadsen J (1991) A simple and reliable method for the determination of cellular RNA content. Biotechnol Tech 5(1):39–42Google Scholar
  43. 43.
    Bergin J (2009) Synthetic biology: emerging global markets. BCC Research LLC, MA, USA.Google Scholar
  44. 44.
    Berrow NS, Bussow K, Coutard B et al (2006) Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1218–1226PubMedGoogle Scholar
  45. 45.
    Bettiga M, Bengtsson O, Hahn-Hagerdal B et al (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40PubMedGoogle Scholar
  46. 46.
    Bhatti HN, Hanif MA, Qasim M et al (2008) Biodiesel production from waste tallow. Fuel 87(2961–2966)Google Scholar
  47. 47.
    Bisht H, Chugh DA, Raje M et al (2002) Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent immunogen. J Biotechnol 99(2):97–110PubMedGoogle Scholar
  48. 48.
    Blancafort P, Magnenat L, Barbas CF 3rd (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21(3):269–274PubMedGoogle Scholar
  49. 49.
    Boer E, Breuer FS, Weniger M et al (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92(1):105–114PubMedGoogle Scholar
  50. 50.
    Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222–227PubMedGoogle Scholar
  51. 51.
    Bonetta L (2005) Prime time for real-time PCR. Nat Methods 2(4):305–312Google Scholar
  52. 52.
    Bordel S, Nielsen J (2010) Identification of flux control in metabolic networks using non-equilibrium thermodynamics. Metab Eng 12(4):369–377PubMedGoogle Scholar
  53. 53.
    Branduardi P, Sauer M, De Gioia L et al (2006) Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb Cell Fact 5:4PubMedGoogle Scholar
  54. 54.
    Branduardi P, Smeraldi C, Porro D (2008) Metabolically engineered yeasts: ‘potential’ industrial applications. J Mol Microbiol Biotechnol 15(1):31–40PubMedGoogle Scholar
  55. 55.
    Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311PubMedGoogle Scholar
  56. 56.
    Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634PubMedGoogle Scholar
  57. 57.
    Bro C, Knudsen S, Regenberg B et al (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472PubMedGoogle Scholar
  58. 58.
    Bro C, Regenberg B, Forster J et al (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111PubMedGoogle Scholar
  59. 59.
    Bulow L (1990) Preparation of artificial bifunctional enzymes by gene fusion. Biochem Soc Symp 57:123–133PubMedGoogle Scholar
  60. 60.
    Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657PubMedGoogle Scholar
  61. 61.
    Buskirk AR, Landrigan A, Liu DR (2004) Engineering a ligand-dependent RNA transcriptional activator. Chem Biol 11(8):1157–1163PubMedGoogle Scholar
  62. 62.
    Canelas AB, Harrison N, Fazio A et al (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145PubMedGoogle Scholar
  63. 63.
    Carrier TA, Keasling JD (1997) Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5′ cassette system. Biotechnol Bioeng 55(3):577–580PubMedGoogle Scholar
  64. 64.
    Carrier TA, Keasling JD (1999) Library of synthetic 5′ secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol Prog 15(1):58–64PubMedGoogle Scholar
  65. 65.
    Chen HM, Neiman AM (2011) A conserved regulatory role for antisense RNA in meiotic gene expression in yeast. Curr Opin Microbiol 14(6):655–659PubMedGoogle Scholar
  66. 66.
    Chen X, Nielsen KF, Borodina I et al (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21PubMedGoogle Scholar
  67. 67.
    Cho MK, Magnus D, Caplan AL et al (1999) Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science 286(5447):2087, 2089–2090PubMedGoogle Scholar
  68. 68.
    Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13 C flux analysis and metabolomics. FEMS Yeast Res 11(3):263–272PubMedGoogle Scholar
  69. 69.
    Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282–290PubMedGoogle Scholar
  70. 70.
    Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86(4):1155–1164PubMedGoogle Scholar
  71. 71.
    Converti A, Perego P (2002) Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl Microbiol Biotechnol 59(2–3):303–309PubMedGoogle Scholar
  72. 72.
    Corte L, Rellini P, Roscini L et al (2010) Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal Chim Acta 659(1–2):258–265PubMedGoogle Scholar
  73. 73.
    Cox RS 3rd, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145PubMedGoogle Scholar
  74. 74.
    Cvijovic M, Olivares-Hernandez R, Agren R et al (2010) BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38(Web Server):W144–W149PubMedGoogle Scholar
  75. 75.
    Dada O, Ramsay L, Dickerson J et al (2010) Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system. Anal Bioanal Chem 397(8):3305–3310PubMedGoogle Scholar
  76. 76.
    De Backer MD, Raponi M, Arndt GM (2002) RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr Opin Microbiol 5(3):323–329PubMedGoogle Scholar
  77. 77.
    de Godoy LM, Olsen JV, Cox J et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254PubMedGoogle Scholar
  78. 78.
    De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87(5):1617–1631PubMedGoogle Scholar
  79. 79.
    Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50(9):2239–2249Google Scholar
  80. 80.
    Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117Google Scholar
  81. 81.
    Diamandis EP (2000) Sequencing with microarray technology–a powerful new tool for molecular diagnostics. Clin Chem 46(10):1523–1525PubMedGoogle Scholar
  82. 82.
    Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418(6894):222–228PubMedGoogle Scholar
  83. 83.
    Drinnenberg IA, Weinberg DE, Xie KT et al (2009) RNAi in budding yeast. Science 326(5952):544–550PubMedGoogle Scholar
  84. 84.
    Dueber JE, Mirsky EA, Lim WA (2007) Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat Biotechnol 25(6):660–662PubMedGoogle Scholar
  85. 85.
    Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759PubMedGoogle Scholar
  86. 86.
    Dueber JE, Yeh BJ, Bhattacharyya RP et al (2004) Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr Opin Struct Biol 14(6):690–699PubMedGoogle Scholar
  87. 87.
    Edwards JR, Ruparel H, Ju J (2005) Mass-spectrometry DNA sequencing. Mutat Res/Fundam Mol Mech Mutagen 573(1–2):3–12Google Scholar
  88. 88.
    Elbeik T, Markowitz N, Nassos P et al (2004) Simultaneous runs of the Bayer VERSANT HIV-1 version 3.0 and HCV bDNA version 3.0 quantitative assays on the system 340 platform provide reliable quantitation and improved work flow. J Clin Microbiol 42(7):3120–3127PubMedGoogle Scholar
  89. 89.
    Elbeik T, Surtihadi J, Destree M et al (2004) Multicenter evaluation of the performance characteristics of the bayer VERSANT HCV RNA 3.0 assay (bDNA). J Clin Microbiol 42(2):563–569PubMedGoogle Scholar
  90. 90.
    Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469PubMedGoogle Scholar
  91. 91.
    Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885PubMedGoogle Scholar
  92. 92.
    Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27(5):465–471PubMedGoogle Scholar
  93. 93.
    Ennis BM, Marshall CT, Maddox IS et al (1986) Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8(10):725–730Google Scholar
  94. 94.
    Enserink M (2005) Infectious diseases. Source of new hope against malaria is in short supply. Science 307(5706):33PubMedGoogle Scholar
  95. 95.
    Escobar JC, Lora ES, Venturini OJ et al (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13(1275–1287)Google Scholar
  96. 96.
    Esener AA, Veerman T, Roels JA et al (1982) Modeling of bacterial growth; formulation and evaluation of a structured model. Biotechnol Bioeng 24(8):1749–1764PubMedGoogle Scholar
  97. 97.
    Eyidogan M, Ozsezen AN, Canakci M et al (2010) Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel 89(10):2713–2720Google Scholar
  98. 98.
    Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697–1712PubMedGoogle Scholar
  99. 99.
    Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19(6):595–603Google Scholar
  100. 100.
    Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63(6):653–658PubMedGoogle Scholar
  101. 101.
    Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115(2):179–187PubMedGoogle Scholar
  102. 102.
    Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469PubMedGoogle Scholar
  103. 103.
    Ezeji T, Qureshi N, Blaschek HP (2007) Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42(1):34–39Google Scholar
  104. 104.
    Fabrizio P, Abelson J (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250(4979):404–409PubMedGoogle Scholar
  105. 105.
    Feng X, Page L, Rubens J et al (2010) Bridging the gap between fluxomics and industrial biotechnology. J Biomed Biotechnol 2010:460717PubMedGoogle Scholar
  106. 106.
    Feng W, Raghuraman MK, Brewer BJ (2007) Mapping yeast origins of replication via single-stranded DNA detection. Methods 41(2):151–157PubMedGoogle Scholar
  107. 107.
    Ferea TL, Bowman BJ (1996) The vacuolar ATPase of Neurospora crassa is indispensable: inactivation of the vma-1 gene by repeat-induced point mutation. Genetics 143(1):147–154PubMedGoogle Scholar
  108. 108.
    Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305PubMedGoogle Scholar
  109. 109.
    Finos L, Farcomeni A (2011) k-FWER control without p -value adjustment, with application to detection of genetic determinants of multiple sclerosis in Italian twins. Biometrics 67(1):174–181PubMedGoogle Scholar
  110. 110.
    Fischer CR, Tseng HC, Tai M et al (2010) Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Appl Microbiol Biotechnol 88(1):265–275PubMedGoogle Scholar
  111. 111.
    Gao H, Zhuo Y, Ashforth E et al (2010) Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites. Protein Cell 1(7):621–626PubMedGoogle Scholar
  112. 112.
    Gaynor JW, Campbell BJ, Cosstick R (2010) RNA interference: a chemist’s perspective. Chem Soc Rev 39(11):4169–4184PubMedGoogle Scholar
  113. 113.
    Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190–197PubMedGoogle Scholar
  114. 114.
    Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2(3):372–382PubMedGoogle Scholar
  115. 115.
    Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220PubMedGoogle Scholar
  116. 116.
    Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56PubMedGoogle Scholar
  117. 117.
    Giga-Hama Y, Tohda H, Takegawa K et al (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):147–155PubMedGoogle Scholar
  118. 118.
    Gilmore JM, Washburn MP (2010) Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics 73(11):2078–2091PubMedGoogle Scholar
  119. 119.
    Glass JI, Assad-Garcia N, Alperovich N et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103(2):425–430PubMedGoogle Scholar
  120. 120.
    Glover III WR (2007) Systems and methods of analyzing nucleic acid polymers and related components. USA PatentGoogle Scholar
  121. 121.
    Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(5287):546, 563–567PubMedGoogle Scholar
  122. 122.
    Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685PubMedGoogle Scholar
  123. 123.
    Gowda M, Li H, Alessi J et al (2006) Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res 34(19):e126PubMedGoogle Scholar
  124. 124.
    Graslund S, Sagemark J, Berglund H et al (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58(2):210–221PubMedGoogle Scholar
  125. 125.
    Grate D, Wilson C (2001) Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 9(10):2565–2570PubMedGoogle Scholar
  126. 126.
    Grossmann J, Roschitzki B, Panse C et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteomics 73(9):1740–1746PubMedGoogle Scholar
  127. 127.
    Guadalupe Medina V, Almering MJ, van Maris AJ et al (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76(1):190–195PubMedGoogle Scholar
  128. 128.
    Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353PubMedGoogle Scholar
  129. 129.
    Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedGoogle Scholar
  130. 130.
    Hahn-Hagerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953PubMedGoogle Scholar
  131. 131.
    Hanlon SE, Rizzo JM, Tatomer DC et al (2011) The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6(4):e19060PubMedGoogle Scholar
  132. 132.
    Harris LM, Desai RP, Welker NE et al (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11PubMedGoogle Scholar
  133. 133.
    Hartner FS, Ruth C, Langenegger D et al (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36(12):e76PubMedGoogle Scholar
  134. 134.
    Harvey I, Garneau P, Pelletier J (2002) Inhibition of translation by RNA-small molecule interactions. RNA 8(4):452–463PubMedGoogle Scholar
  135. 135.
    Haseloff J, Ajioka J (2009) Synthetic biology: history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391PubMedGoogle Scholar
  136. 136.
    Hasunuma T, Sanda T, Yamada R et al (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10(1):2PubMedGoogle Scholar
  137. 137.
    Haubold B, Wiehe T (2004) Comparative genomics: methods and applications. Naturwissenschaften 91(9):405–421PubMedGoogle Scholar
  138. 138.
    Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5, Part 2. Academic Press, London, pp 209–344Google Scholar
  139. 139.
    Herrgard MJ, Fong SS, Palsson BO (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2(7):e72PubMedGoogle Scholar
  140. 140.
    Hershey JWB, Mathews M, Sonenberg N et al (1996) Translational control, vol 30, Cold spring harbor monograph series. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  141. 141.
    Hicks WM, Yamaguchi M, Haber JE (2011) Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci U S A 108(8):3108–3115PubMedGoogle Scholar
  142. 142.
    Hoefnagel MH, Starrenburg MJ, Martens DE et al (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148(Pt 4):1003–1013PubMedGoogle Scholar
  143. 143.
    Højer-Pedersen J, Smedsgaard J, Nielsen J (2008) The yeast metabolome addressed by electrospray ionization mass spectrometry: initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry. Metabolomics 4(4):393–405Google Scholar
  144. 144.
    Hong WK, Kim CH, Heo SY et al (2010) Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol Lett 32(8):1077–1082PubMedGoogle Scholar
  145. 145.
    Hong WK, Kim CH, Heo SY et al (2011) 1,3-Propandiol production by engineered Hansenula polymorpha expressing dha genes from Klebsiella pneumoniae. Bioprocess Biosyst Eng 34(2):231–236PubMedGoogle Scholar
  146. 146.
    Hong K-K, Vongsangnak W, Vemuri GN et al (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci U S A 108(29):12179–12184PubMedGoogle Scholar
  147. 147.
    Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443PubMedGoogle Scholar
  148. 148.
    Hu H, Qian J, Chu J et al (2009) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J Biotechnol 141(3–4):97–103PubMedGoogle Scholar
  149. 149.
    Huang B, Guo J, Yi B et al (2008) Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett 30(7):1121–1137PubMedGoogle Scholar
  150. 150.
    Huang WC, Ramey DE, Yang ST (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 113–116:887–898PubMedGoogle Scholar
  151. 151.
    Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347PubMedGoogle Scholar
  152. 152.
    Insenser MR, Hernáez ML, Nombela C et al (2010) Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics 73(6):1183–1195PubMedGoogle Scholar
  153. 153.
    Inui M, Suda M, Kimura S et al (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316PubMedGoogle Scholar
  154. 154.
    Isaacs FJ, Collins JJ (2005) Plug-and-play with RNA. Nat Biotechnol 23(3):306–307PubMedGoogle Scholar
  155. 155.
    Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24(5):545–554PubMedGoogle Scholar
  156. 156.
    Isaacs FJ, Dwyer DJ, Ding C et al (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847PubMedGoogle Scholar
  157. 157.
    Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272PubMedGoogle Scholar
  158. 158.
    Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2(4):247–256PubMedGoogle Scholar
  159. 159.
    Jarboe LR, Zhang X, Wang X et al (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042PubMedGoogle Scholar
  160. 160.
    Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326PubMedGoogle Scholar
  161. 161.
    Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87PubMedGoogle Scholar
  162. 162.
    Jeppsson M, Johansson B, Jensen PR et al (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20(15):1263–1272PubMedGoogle Scholar
  163. 163.
    Ji Y, Zhang B, Van SF et al (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293(5538):2266–2269PubMedGoogle Scholar
  164. 164.
    Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4–5):284–291PubMedGoogle Scholar
  165. 165.
    Jöbses IML, Egberts GTC, van Baalen A et al (1985) Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35 °C. Biotechnol Bioeng 27(7):984–995PubMedGoogle Scholar
  166. 166.
    Juneau K, Palm C, Miranda M et al (2007) High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc Natl Acad Sci U S A 104(5):1522–1527PubMedGoogle Scholar
  167. 167.
    Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93(24):13770–13773PubMedGoogle Scholar
  168. 168.
    Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76PubMedGoogle Scholar
  169. 169.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358PubMedGoogle Scholar
  170. 170.
    Khongto B, Laoteng K, Tongta A (2010) Fermentation process development of recombinant Hansenula polymorpha for gamma-linolenic acid production. J Microbiol Biotechnol 20(11):1555–1562PubMedGoogle Scholar
  171. 171.
    Kim DS, Gusti V, Pillai SG et al (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11(11):1667–1677PubMedGoogle Scholar
  172. 172.
    Kim I-K, Roldão A, Siewers V et al (2011) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12(2):228–248Google Scholar
  173. 173.
    Kim SH, Shin DH, Liu J et al (2005) Structural genomics of minimal organisms and protein fold space. J Struct Funct Genomics 6(2–3):63–70PubMedGoogle Scholar
  174. 174.
    Kind S, Jeong WK, Schroder H et al (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180PubMedGoogle Scholar
  175. 175.
    Kirpekar F, Nordhoff E, Larsen LK et al (1998) DNA sequence analysis by MALDI mass spectrometry. Nucleic Acids Res 26(11):2554–2559PubMedGoogle Scholar
  176. 176.
    Kitney RI (2007) Synthetic biology – engineering biologically-based devices and systems. In: IFMBE proceedings. Springer, Berlin/Heidelberg, pp 1138–1139Google Scholar
  177. 177.
    Klimacek M, Krahulec S, Sauer U et al (2010) Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76(22):7566–7574PubMedGoogle Scholar
  178. 178.
    Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1–3):13–20PubMedGoogle Scholar
  179. 179.
    Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–4683PubMedGoogle Scholar
  180. 180.
    Koonin E (2000) How many genes can make a cell: the minimal-gene-Set concept. Annu Rev Genomics Hum Genet 1:18Google Scholar
  181. 181.
    Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–136PubMedGoogle Scholar
  182. 182.
    Kotter P, Weigand JE, Meyer B et al (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37(18):e120PubMedGoogle Scholar
  183. 183.
    Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276PubMedGoogle Scholar
  184. 184.
    Kümmel A, Ewald JC, Fendt S-M et al (2010) Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res 10(3):322–332PubMedGoogle Scholar
  185. 185.
    Kuyper M, Toirkens MJ, Diderich JA et al (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934PubMedGoogle Scholar
  186. 186.
    Kvitek DJ, Sherlock G (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7(4)Google Scholar
  187. 187.
    Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288–290PubMedGoogle Scholar
  188. 188.
    Larbi NB, Jefferies C (2009) 2D-DIGE: comparative proteomics of cellular signalling pathways. Methods Mol Biol 517:105–132PubMedGoogle Scholar
  189. 189.
    Lee SM, Cho MO, Park CH et al (2008) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuel 22(5):3459–3464Google Scholar
  190. 190.
    Lee S, Kim P-J, Jeong H (2011) Global organization of protein complexome in the yeast Saccharomyces cerevisiae. BMC Syst Biol 5(1):126PubMedGoogle Scholar
  191. 191.
    Lee SJ, Lee DY, Kim TY et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71(12):7880–7887PubMedGoogle Scholar
  192. 192.
    Lee DK, Park JW, Kim YJ et al (2003) Toward a functional annotation of the human genome using artificial transcription factors. Genome Res 13(12):2708–2716PubMedGoogle Scholar
  193. 193.
    Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804PubMedGoogle Scholar
  194. 194.
    Lefrancois P, Euskirchen G, Auerbach R et al (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10(1):37PubMedGoogle Scholar
  195. 195.
    Leon C, Garcia-Canas V, Gonzalez R et al (2011) Fast and sensitive detection of genetically modified yeasts in wine. J Chromatogr A 1218(42):7550–7556PubMedGoogle Scholar
  196. 196.
    Liew ST, Arbakariya A, Rosfarizan M et al (2006) Production of solvent (acetone-butanol-ethanol) in continuous fermentation by clostridium saccharobutylicum DSM 13864 using gelatinised sago starch as a carbon source. Malays J Microbiol 2(2):42–50Google Scholar
  197. 197.
    Liu L, Agren R, Bordel S et al (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584(12):2556–2564PubMedGoogle Scholar
  198. 198.
    Liu S, Bischoff KM, Qureshi N et al (2010) Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 27(4):283–288PubMedGoogle Scholar
  199. 199.
    Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48(2):204–210Google Scholar
  200. 200.
    Liu H, Liu K, Yan M et al (2011) GTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol 164(7):1150–1159PubMedGoogle Scholar
  201. 201.
    Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16(1):19–25PubMedGoogle Scholar
  202. 202.
    Liu H, Yan M, Lai C et al (2010) gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 160(2):574–582PubMedGoogle Scholar
  203. 203.
    Lombardi A, Bursomanno S, Lopardo T et al (2010) Pichia pastoris as a host for secretion of toxic saporin chimeras. FASEB J 24(1):253–265PubMedGoogle Scholar
  204. 204.
    Lorenz A, Fuchs J, Trelles-Sticken E et al (2002) Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae x S. paradoxus hybrids. J Cell Sci 115(Pt 19):3829–3835PubMedGoogle Scholar
  205. 205.
    Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73(19):6072–6077PubMedGoogle Scholar
  206. 206.
    Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101(4):647–653PubMedGoogle Scholar
  207. 207.
    Lynch SA, Desai SK, Sajja HK et al (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14(2):173–184PubMedGoogle Scholar
  208. 208.
    Lynch M, Sung W, Morris K et al (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105(27):9272–9277PubMedGoogle Scholar
  209. 209.
    Ma M, Liu L (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10(1):169PubMedGoogle Scholar
  210. 210.
    Madsen KM, Udatha GD, Semba S et al (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763PubMedGoogle Scholar
  211. 211.
    Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340PubMedGoogle Scholar
  212. 212.
    Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973PubMedGoogle Scholar
  213. 213.
    Malmstrom J, Beck M, Schmidt A et al (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460(7256):762–765PubMedGoogle Scholar
  214. 214.
    Marchisio MA, Rudolf F (2011) Synthetic biosensing systems. Int J Biochem Cell Biol 43(3):310–319PubMedGoogle Scholar
  215. 215.
    Martins FS, Elian SDA, Vieira AT et al (2011) Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol 301(4):359–364PubMedGoogle Scholar
  216. 216.
    Matsuda F, Furusawa C, Kondo T et al (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 10:70PubMedGoogle Scholar
  217. 217.
    Matsuda T, Kigawa T, Koshiba S et al (2006) Cell-free synthesis of zinc-binding proteins. J Struct Funct Genomics 7(2):93–100PubMedGoogle Scholar
  218. 218.
    Mellado MC, Peixoto C, Cruz PE et al (2008) Purification of recombinant rotavirus VP7 glycoprotein for the study of in vitro rotavirus-like particles assembly. J Chromatogr B Analyt Technol Biomed Life Sci 874(1–2):89–94PubMedGoogle Scholar
  219. 219.
    Meng F, Cargile BJ, Patrie SM et al (2002) Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal Chem 74(13):2923–2929PubMedGoogle Scholar
  220. 220.
    Mermelstein LD, Papoutsakis ET, Petersen DJ et al (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioeng 42(9):1053–1060PubMedGoogle Scholar
  221. 221.
    Merritt J, DiTonno JR, Mitra RD et al (2003) Parallel competition analysis of Saccharomyces cerevisiae strains differing by a single base using polymerase colonies. Nucleic Acids Res 31(15):e84PubMedGoogle Scholar
  222. 222.
    Miclet E, Stoven V, Michels PAM et al (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem 276(37):34840–34846PubMedGoogle Scholar
  223. 223.
    Mignone F, Gissi C, Liuni S et al (2002) Untranslated regions of mRNAs. Genome Biol 3(3):REVIEWS0004PubMedGoogle Scholar
  224. 224.
    Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6(20):5385–5408PubMedGoogle Scholar
  225. 225.
    Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457(7228):413–420PubMedGoogle Scholar
  226. 226.
    Morimoto T, Kadoya R, Endo K et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15(2):73–81PubMedGoogle Scholar
  227. 227.
    Murakami K, Tao E, Ito Y et al (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75(3):589–597PubMedGoogle Scholar
  228. 228.
    Murphy KF, Balazsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 104(31):12726–12731PubMedGoogle Scholar
  229. 229.
    Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93(19):10268–10273PubMedGoogle Scholar
  230. 230.
    Mutschlechner O, Swoboda H, Gapes JR (2000) Continuous two-stage ABE-fermentation using Clostridium beijerinckii NRRL B592 operating with a growth rate in the first stage vessel close to its maximal value. J Mol Microbiol Biotechnol 2(1):101–105PubMedGoogle Scholar
  231. 231.
    Na D, Kim TY, Lee SY (2010) Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol 13(3):363–370PubMedGoogle Scholar
  232. 232.
    Nagar B, Hantschel O, Young MA et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112(6):859–871PubMedGoogle Scholar
  233. 233.
    Nair RV, Green EM, Watson DE et al (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181(1):319–330PubMedGoogle Scholar
  234. 234.
    Namjoshi AA, Hu WS, Ramkrishna D (2003) Unveiling steady-state multiplicity in hybridoma cultures: the cybernetic approach. Biotechnol Bioeng 81(1):80–91PubMedGoogle Scholar
  235. 235.
    Napoli F, Olivieri G, Russo ME et al (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol 37(6):603–608PubMedGoogle Scholar
  236. 236.
    Ndukum J, Fonseca LL, Santos H et al (2011) Statistical inference methods for sparse biological time series data. BMC Syst Biol 5:57PubMedGoogle Scholar
  237. 237.
    Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412PubMedGoogle Scholar
  238. 238.
    Nevoigt E, Fischer C, Mucha O et al (2007) Engineering promoter regulation. Biotechnol Bioeng 96(3):550–558PubMedGoogle Scholar
  239. 239.
    Nevoigt E, Kohnke J, Fischer CR et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72(8):5266–5273PubMedGoogle Scholar
  240. 240.
    Ng P, Tan JJ, Ooi HS et al (2006) Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res 34(12):e84PubMedGoogle Scholar
  241. 241.
    Ng P, Wei CL, Sung WK et al (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2(2):105–111PubMedGoogle Scholar
  242. 242.
    Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131PubMedGoogle Scholar
  243. 243.
    Nielsen KL, Hogh AL, Emmersen J (2006) DeepSAGE–digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34(19):e133PubMedGoogle Scholar
  244. 244.
    Nielsen DR, Leonard E, Yoon SH et al (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4–5):262–273PubMedGoogle Scholar
  245. 245.
    Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37(1):52–68Google Scholar
  246. 246.
    Norbeck J, Påhlman A-K, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from saccharomyces cerevisiae. J Biol Chem 271(23):13875–13881PubMedGoogle Scholar
  247. 247.
    Olivares-Hernandez R, Bordel S, Nielsen J (2011) Codon usage variability determines the correlation between proteome and transcriptome fold changes. BMC Syst Biol 5:33PubMedGoogle Scholar
  248. 248.
    Olivares-Hernández R, Usaite R, Nielsen J (2010) Integrative analysis using proteome and transcriptome data from yeast to unravel regulatory patterns at post-transcriptional level. Biotechnol Bioeng 107(5):865–875PubMedGoogle Scholar
  249. 249.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedGoogle Scholar
  250. 250.
    Otero JM, Olsson L, Nielsen J (2007) Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production. J Biotechnol 131(2, Supplement):S205Google Scholar
  251. 251.
    Otero JM, Vongsangnak W, Asadollahi MA et al (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723PubMedGoogle Scholar
  252. 252.
    Papworth M, Kolasinska P, Minczuk M (2006) Designer zinc-finger proteins and their applications. Gene 366(1):27–38PubMedGoogle Scholar
  253. 253.
    Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31PubMedGoogle Scholar
  254. 254.
    Pardo C, Hoose SA, Pondugula S et al (2009) DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 523:41–65PubMedGoogle Scholar
  255. 255.
    Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme Microb Technol 10(11):660–668Google Scholar
  256. 256.
    Park KS, Kim JS (2006) Engineering of GAL1 promoter-driven expression system with artificial transcription factors. Biochem Biophys Res Commun 351(2):412–417PubMedGoogle Scholar
  257. 257.
    Park JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 27(6):979–988PubMedGoogle Scholar
  258. 258.
    Park JH, Kim TY, Lee KH et al (2011) Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946PubMedGoogle Scholar
  259. 259.
    Park KS, Lee DK, Lee H et al (2003) Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21(10):1208–1214PubMedGoogle Scholar
  260. 260.
    Park CH, Okos MR, Wankat PC (1989) Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor. Biotechnol Bioeng 34(1):18–29PubMedGoogle Scholar
  261. 261.
    Park KS, Seol W, Yang HY et al (2005) Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells. Biotechnol Prog 21(3):664–670PubMedGoogle Scholar
  262. 262.
    Partow S, Siewers V, Bjorn S et al (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964PubMedGoogle Scholar
  263. 263.
    Pavlik P, Simon M, Schuster T et al (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24(1–2):21–25PubMedGoogle Scholar
  264. 264.
    Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23(6):455–464PubMedGoogle Scholar
  265. 265.
    Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032PubMedGoogle Scholar
  266. 266.
    Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376PubMedGoogle Scholar
  267. 267.
    Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8(1):1–13PubMedGoogle Scholar
  268. 268.
    Phugare S, Patil P, Govindwar S et al (2010) Exploitation of yeast biomass generated as a waste product of distillery industry for remediation of textile industry effluent. Int Biodeter Biodegr 64(8):716–726Google Scholar
  269. 269.
    Posfai G, Plunkett G 3rd, Feher T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046PubMedGoogle Scholar
  270. 270.
    Price JV, Cech TR (1985) Coupling of Tetrahymena ribosomal RNA splicing to beta-galactosidase expression in Escherichia coli. Science 228(4700):719–722PubMedGoogle Scholar
  271. 271.
    Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25PubMedGoogle Scholar
  272. 272.
    Quek LE, Wittmann C, Nielsen LK et al (2009) OpenFLUX: efficient modelling software for 13 C-based metabolic flux analysis. Microb Cell Fact 8:25PubMedGoogle Scholar
  273. 273.
    Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27(5):287–291PubMedGoogle Scholar
  274. 274.
    Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99(13):5915–5922PubMedGoogle Scholar
  275. 275.
    Qureshi N, Li X-L, Hughes S et al (2006) Butanol production from corn fiber xylan using clostridium acetobutylicum. Biotechnol Prog 22(3):673–680PubMedGoogle Scholar
  276. 276.
    Qureshi N, Maddox IS (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of clostridium-acetobutylicum and integration with product removal by liquid-liquid-extraction. J Ferment Bioeng 80(2):185–189Google Scholar
  277. 277.
    Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II–Fed-batch fermentation. Biomass Bioenergy 32(2):176–183Google Scholar
  278. 278.
    Qureshi N, Saha BC, Dien B et al (2010) Production of butanol (a biofuel) from agricultural residues: part I - use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565Google Scholar
  279. 279.
    Qureshi N, Saha BC, Hector RE et al (2010) Production of butanol (a biofuel) from agricultural residues: part II - use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34(4):566–571Google Scholar
  280. 280.
    Ramon A, Marin M (2011) Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 6(6):700–706PubMedGoogle Scholar
  281. 281.
    Raspor P, Zupan J, ČAdeŽ N (2007) Validation of yeast identification by in Silico Rflp. J Rapid Methods Autom Microbiol 15(3):267–281Google Scholar
  282. 282.
    Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80(1):27–43PubMedGoogle Scholar
  283. 283.
    Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45(4):490–511PubMedGoogle Scholar
  284. 284.
    Redding-Johanson AM, Batth TS, Chan R et al (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13(2):194–203PubMedGoogle Scholar
  285. 285.
    Ren B, Robert F, Wyrick J et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309PubMedGoogle Scholar
  286. 286.
    Reschiglian P, Moon MH (2008) Flow field-flow fractionation: a pre-analytical method for proteomics. J Proteomics 71(3):265–276PubMedGoogle Scholar
  287. 287.
    Rinaudo K, Bleris L, Maddamsetti R et al (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25(7):795–801PubMedGoogle Scholar
  288. 288.
    Ro DK, Ouellet M, Paradise EM et al (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83PubMedGoogle Scholar
  289. 289.
    Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943PubMedGoogle Scholar
  290. 290.
    Roepstorff P (1997) Mass spectrometry in protein studies from genome to function. Curr Opin Biotechnol 8(1):6–13PubMedGoogle Scholar
  291. 291.
    Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242(1):84–89PubMedGoogle Scholar
  292. 292.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedGoogle Scholar
  293. 293.
    Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52(5):1183–1185PubMedGoogle Scholar
  294. 294.
    Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen 9(4):247–257PubMedGoogle Scholar
  295. 295.
    Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333(6047):1248–1252PubMedGoogle Scholar
  296. 296.
    Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89(6):831–838PubMedGoogle Scholar
  297. 297.
    Saito H, Inoue T (2009) Synthetic biology with RNA motifs. Int J Biochem Cell Biol 41(2):398–404PubMedGoogle Scholar
  298. 298.
    Salusjarvi L, Kankainen M, Soliymani R et al (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18PubMedGoogle Scholar
  299. 299.
    Sampaio PN, Sousa L, Calado CRC et al (2011) Use of chemometrics in the selection of a Saccharomyces cerevisiae expression system for recombinant cyprosin B production. Biotechnol Lett 33(11):2111–2119PubMedGoogle Scholar
  300. 300.
    Sanda T, Hasunuma T, Matsuda F et al (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol 102(17):7917–7924PubMedGoogle Scholar
  301. 301.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467PubMedGoogle Scholar
  302. 302.
    Sansonetti S, Hobley TJ, Calabro V et al (2011) A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study. Bioresour Technol 102(16):7513–7520PubMedGoogle Scholar
  303. 303.
    Satyanarayana T, Kunze G (2009) Yeast biotechnology: diversity and applications. Springer, DordrechtGoogle Scholar
  304. 304.
    Schilling CH, Edwards JS, Letscher D et al (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71(4):286–306PubMedGoogle Scholar
  305. 305.
    Schmidt M (2009) Synthetic biology: the technoscience and its societal consequences. Springer, Dordrecht/New YorkGoogle Scholar
  306. 306.
    Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75PubMedGoogle Scholar
  307. 307.
    Seino A, Yanagida Y, Aizawa M et al (2005) Translational control by internal ribosome entry site in Saccharomyces cerevisiae. Biochim Biophys Acta 1681(2–3):166–174PubMedGoogle Scholar
  308. 308.
    Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61(7–8):513–526PubMedGoogle Scholar
  309. 309.
    Shen CR, Lan EI, Dekishima Y et al (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915PubMedGoogle Scholar
  310. 310.
    Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100(26):15776–15781PubMedGoogle Scholar
  311. 311.
    Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102(21):7695–7700PubMedGoogle Scholar
  312. 312.
    Sillers R, Chow A, Tracy B et al (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10(6):321–332PubMedGoogle Scholar
  313. 313.
    Skotheim RI, Thomassen GO, Eken M et al (2009) A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 8:5PubMedGoogle Scholar
  314. 314.
    Smith LM, Sanders JZ, Kaiser RJ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679PubMedGoogle Scholar
  315. 315.
    Smolke CD, Carrier TA, Keasling JD (2000) Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl Environ Microbiol 66(12):5399–5405PubMedGoogle Scholar
  316. 316.
    Smolke CD, Keasling JD (2002) Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 80(7):762–776PubMedGoogle Scholar
  317. 317.
    Steen EJ, Chan R, Prasad N et al (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36PubMedGoogle Scholar
  318. 318.
    Sterner R, Merkl R, Raushel FM (2008) Computational design of enzymes. Chem Biol 15(5):421–423PubMedGoogle Scholar
  319. 319.
    Storey JD, Tibshirani R (2003) Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 224:149–157PubMedGoogle Scholar
  320. 320.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550PubMedGoogle Scholar
  321. 321.
    Suen WC, Zhang N, Xiao L et al (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17(2):133–140PubMedGoogle Scholar
  322. 322.
    Suess B, Hanson S, Berens C et al (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res 31(7):1853–1858PubMedGoogle Scholar
  323. 323.
    Suzuki N, Nonaka H, Tsuge Y et al (2005) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69(2):151–161PubMedGoogle Scholar
  324. 324.
    Syed QUA, Nadeem M, Nelofer R (2008) Enhanced butanol production by mutant strains of clostridium acetobutylicum in molasses medium. Turk J Biochem 33(1):25–30Google Scholar
  325. 325.
  326. 326.
    Tang WL, Zhao H (2009) Industrial biotechnology: tools and applications. Biotechnol J 4(12):1725–1739PubMedGoogle Scholar
  327. 327.
    Tashiro Y, Shinto H, Hayashi M et al (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240PubMedGoogle Scholar
  328. 328.
    Tashiro Y, Takeda K, Kobayashi G et al (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268PubMedGoogle Scholar
  329. 329.
    Teixeira AP, Portugal CA, Carinhas N et al (2009) In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 102(4):1098–1106PubMedGoogle Scholar
  330. 330.
    Teixeira MC, Raposo LR, Mira NP et al (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761–5772PubMedGoogle Scholar
  331. 331.
    Ten years of synergy (2010) Nature 463(7279):269–270Google Scholar
  332. 332.
    Thompson SR, Gulyas KD, Sarnow P (2001) Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 98(23):12972–12977PubMedGoogle Scholar
  333. 333.
    Tobe VO, Taylor SL, Nickerson DA (1996) Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res 24(19):3728–3732PubMedGoogle Scholar
  334. 334.
    Tochigi Y, Sato N, Sahara T et al (2010) Sensitive and convenient yeast reporter assay for high-throughput analysis by using a secretory luciferase from Cypridina noctiluca. Anal Chem 82(13):5768–5776PubMedGoogle Scholar
  335. 335.
    Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965PubMedGoogle Scholar
  336. 336.
    Topp S, Reynoso CM, Seeliger JC et al (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76(23):7881–7884PubMedGoogle Scholar
  337. 337.
    Toussaint M, Wellinger RJ, Conconi A (2010) Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutat Res/Genet Toxicol Environ Mutagen 698(1–2):52–59Google Scholar
  338. 338.
    Ubiyvovk VM, Ananin VM, Malyshev AY et al (2011) Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11:8PubMedGoogle Scholar
  339. 339.
    Usaite R, Jewett MC, Oliveira AP et al (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5:319PubMedGoogle Scholar
  340. 340.
    van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L et al (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15(7):256–263PubMedGoogle Scholar
  341. 341.
    van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31(1):87–106PubMedGoogle Scholar
  342. 342.
    Van Der Westhuizen A, Jones DT, Woods DR (1982) Autolytic Activity and Butanol Tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44(6):1277–1281Google Scholar
  343. 343.
    van Dijk EL, Chen CL, d/’Aubenton-Carafa Y et al (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117PubMedGoogle Scholar
  344. 344.
    Velculescu VE, Zhang L, Zhou W et al (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251PubMedGoogle Scholar
  345. 345.
    Vieira HL, Estevao C, Roldao A et al (2005) Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production. J Biotechnol 120(1):72–82PubMedGoogle Scholar
  346. 346.
    Villas-Boas SG, Moxley JF, Akesson M et al (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388(Pt 2):669–677PubMedGoogle Scholar
  347. 347.
    Wang Y, Chu J, Zhuang Y et al (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27(6):989–995PubMedGoogle Scholar
  348. 348.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedGoogle Scholar
  349. 349.
    Watanabe S, Abu Saleh A, Pack SP et al (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153(Pt 9):3044–3054PubMedGoogle Scholar
  350. 350.
    Watanabe S, Kodaki T, Makino K (2004) Various mutations by using yeast gene for protein engineering. Nucleic Acids Symp Ser 48:197–198Google Scholar
  351. 351.
    Watanabe S, Saleh AA, Pack SP et al (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP + -dependent xylitol dehydrogenase. J Biotechnol 130(3):316–319PubMedGoogle Scholar
  352. 352.
    Weiss B, Davidkova G, Zhou LW (1999) Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci 55(3):334–358PubMedGoogle Scholar
  353. 353.
    Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282(5387):296–298PubMedGoogle Scholar
  354. 354.
    Westers H, Dorenbos R, van Dijl JM et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20(12):2076–2090PubMedGoogle Scholar
  355. 355.
    Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517PubMedGoogle Scholar
  356. 356.
    Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99(25):15908–15913PubMedGoogle Scholar
  357. 357.
    Winkler WC, Nahvi A, Roth A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428(6980):281–286PubMedGoogle Scholar
  358. 358.
    Winston F (2001) EMS and UV Mutagenesis in Yeast. Curr Protoc Mol Biol. WileyGoogle Scholar
  359. 359.
    Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906PubMedGoogle Scholar
  360. 360.
    Wisselink HW, Toirkens MJ, Wu Q et al (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914PubMedGoogle Scholar
  361. 361.
    Wolf JJ, Dowell RD, Mahony S et al (2010) Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 185(2):513–522PubMedGoogle Scholar
  362. 362.
    Wright J, Bellissimi E, de Hulster E et al (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11:299–306PubMedGoogle Scholar
  363. 363.
    Wu L, Mashego MR, van Dam JC et al (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13 C-labeled cell extracts as internal standards. Anal Biochem 336(2):164–171PubMedGoogle Scholar
  364. 364.
    Wu D, Wang Q, Assary RS et al (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51(7):1634–1647PubMedGoogle Scholar
  365. 365.
    Xia M, Farkas T, Jiang X (2007) Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J Med Virol 79(1):74–83PubMedGoogle Scholar
  366. 366.
    Xia X, Holcik M (2009) Strong eukaryotic IRESs have weak secondary structure. PLoS One 4(1):1–3Google Scholar
  367. 367.
    Yazawa H, Kamisaka Y, Kimura K et al (2011) Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl Microbiol Biotechnol 91(6):1593–1600PubMedGoogle Scholar
  368. 368.
    Yen L, Svendsen J, Lee JS et al (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431(7007):471–476.PubMedGoogle Scholar
  369. 369.
    Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24PubMedGoogle Scholar
  370. 370.
    Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686–699PubMedGoogle Scholar
  371. 371.
    Yu KO, Jung J, Kim SW et al (2011) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109(1):110–115PubMedGoogle Scholar
  372. 372.
    Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13 C-flux analysis. Curr Opin Microbiol 12(5):553–558PubMedGoogle Scholar
  373. 373.
    Zarif BR, Azin M, Amirmozafari N (2011) Increasing the bioethanol yield in the presence of furfural via mutation of a native strain of Saccharomyces cerevisiae. Afr J Microbiol Res 5(6):651–656Google Scholar
  374. 374.
    Zhang L, Chang S, Wang J (2010) How to make a minimal genome for synthetic minimal cell. Protein Cell 1(5):8Google Scholar
  375. 375.
    Zhang L, Chang S, Wang J (2011) Synthetic biology: from the first synthetic cell to see its current situation and future development. Chinese Sci Bull 56(3):9Google Scholar
  376. 376.
    Zhang J, Lau MW, Ferre-D’Amare AR (2010) Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49(43):9123–9131PubMedGoogle Scholar
  377. 377.
    Zhang Y, Thiele I, Weekes D et al (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325(5947):1544–1549PubMedGoogle Scholar
  378. 378.
    Zhang J, Vaga S, Chumnanpuen P et al (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:545PubMedGoogle Scholar
  379. 379.
    Zhang J, Vemuri G, Nielsen J (2010) Systems biology of energy homeostasis in yeast. Curr Opin Microbiol 13(3):382–388PubMedGoogle Scholar
  380. 380.
    Zhang Y, Yu Z, Xin L et al (2010) Expression of the hemagglutinin and neuramidinase gene of influenza A virus H1N1 in Pichia methanolica. Sheng Wu Gong Cheng Xue Bao 26(8):1068–1073PubMedGoogle Scholar
  381. 381.
    Zhao L, Wang J, Zhou J et al (2011) Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production. Wei Sheng Wu Xue Bao 51(1):50–58PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden

Personalised recommendations