Systems Metabolic Engineering of Corynebacterium glutamicum for Biobased Production of Chemicals, Materials and Fuels



Systems metabolic engineering integrates systems wide understanding of biological systems with targeted genetic modification towards optimum production performance. Supported by novel powerful tools and technologies from systems biology, strategies for industrial strain engineering evolve more and more from trial and error into knowledge based rational development. For the soil bacterium Corynebacterium glutamicum, a working horse in industrial biotechnology since more than 50 years, this opens a broad avenue to create and shape a versatile cell factory with superior properties for many purposes. As reviewed in this chapter, applications of systems metabolic engineering to C. glutamicum deeply open the new era of sustainable bio-economy with various chemicals, materials and fuels obtained from renewable feed stocks. Additionally, a first example from lysine production gives a flavor on the next future level of strain engineering, i.e. synthetic metabolic engineering, enabling genome scale models and synthetic biology for a priori global strain design.


Metabolic engineering Corynebacterium glutamicum Chemicals Bio-materials Bio-fuels Genetic engineering Strain engineering Industrial biotechnology Fluxomics Systems biology Synthetic biology Sustainable bio-economy Renewable feedstocks Model-based design Hemicellulose Xylose Arabinose Cellobiose Glycerol Silage Starch Whey Amino acids Lysine Glutamate Methionine Valine Serine Tryptophan Vitamins Flavor Fragrances Diamines Diaminopentane Diaminobutane Succinic acid Propanediol, Ethanol Isobutanol Rational Strain design Metabolic model Multi omics Sugar assimilation Biosynthesis Model prediction Genome breeding Cadaverine Putrescine 


  1. 1.
    Anastassiadis S (2007) L-lysine fermentation. Recent Pat Biotechnol 1(1):11–24PubMedGoogle Scholar
  2. 2.
    Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198PubMedGoogle Scholar
  3. 3.
    Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73(4):1308–1319PubMedGoogle Scholar
  4. 4.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89PubMedGoogle Scholar
  5. 5.
    Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70(5):2861–2866PubMedGoogle Scholar
  6. 6.
    Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26(2):361–371PubMedGoogle Scholar
  7. 7.
    Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S (2011) Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-Valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77(18):6644–6652PubMedGoogle Scholar
  8. 8.
    Becker J, Heinzle E, Klopprogge C, Zelder O, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71(12):8587–8596PubMedGoogle Scholar
  9. 9.
    Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109PubMedGoogle Scholar
  10. 10.
    Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(24):7866–7869PubMedGoogle Scholar
  11. 11.
    Becker J, Buschke N, Bücker R, Wittmann C (2010) Systems level engineering of Corynebacterium glutamicum – reprogramming translational efficiency for superior production. Eng Life Sci 10(5):430–438Google Scholar
  12. 12.
    Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168PubMedGoogle Scholar
  13. 13.
    Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L: -lysine production strains. Appl Microbiol Biotechnol 75:7866Google Scholar
  14. 14.
    Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084PubMedGoogle Scholar
  15. 15.
    Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76(3):615–623PubMedGoogle Scholar
  16. 16.
    Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79(3):471–479PubMedGoogle Scholar
  17. 17.
    Bolten CJ, Schröder H, Dickschat J, Wittmann C (2010) Towards methionine overproduction in Corynebacterium glutamicum – methanethiol and dimethyldisulfide as reduced sulfur sources. J Microbiol Biotechnol 20(8):1196–1203PubMedGoogle Scholar
  18. 18.
    Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3(4):289–300PubMedGoogle Scholar
  19. 19.
    Borner J, Buchinger S, Schomburg D (2007) A high-throughput method for microbial metabolome analysis using gas chromatography/mass spectrometry. Anal Biochem 367(2):143–151PubMedGoogle Scholar
  20. 20.
    Brinkrolf K, Brune I, Tauch A (2007) The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol 129(2):191–211PubMedGoogle Scholar
  21. 21.
    Brinkrolf K, Schröder J, Pühler A, Tauch A (2010) The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol 149(3):173–182PubMedGoogle Scholar
  22. 22.
    Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6(1):86PubMedGoogle Scholar
  23. 23.
    Buchinger S, Strösser J, Rehm N, Hänssler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A (2009) A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 140(1–2):68–74PubMedGoogle Scholar
  24. 24.
    Burkovski A (2006) Proteomics of Corynebacterium glutamicum: essential industrial bacterium. Methods Biochem Anal 49:137–147PubMedGoogle Scholar
  25. 25.
    Carothers WH (1938) Linear polyamids and their production. US PatentGoogle Scholar
  26. 26.
    Dickschat J, Wickel S, Bolten CJ, Nawrath T, Schulz S, Wittmann C (2010) Pyrazine biosynthesis in Corynebacterium glutamicum. Eur J Org Chem 2010:2687–2695Google Scholar
  27. 27.
    Dominguez H, Lindley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62(10):3878–3880PubMedGoogle Scholar
  28. 28.
    Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254(1):96–102PubMedGoogle Scholar
  29. 29.
    Dong X, Quinn PJ, Wang X (2010) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv 29(1):11–23PubMedGoogle Scholar
  30. 30.
    Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:21PubMedGoogle Scholar
  31. 31.
    Gosset G, Yong-Xiao J, Berry A (1996) A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J Ind Microbiol 17(1):47–52PubMedGoogle Scholar
  32. 32.
    Haberhauer G, Schröder H, Pompejus M, Zelder O, Kröger B (2001) Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport. Patent WO 01/00805 PatentGoogle Scholar
  33. 33.
    Hagishita T, Yoshida T, Izumi Y, Mitsunaga T (1996) Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci Biotechnol Biochem 60(10):1604–1607PubMedGoogle Scholar
  34. 34.
    Hasegawa T, Hashimoto K, Kawasaki H, Nakamatsu T (2008) Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum. J Biosci Bioeng 105(1):12–19PubMedGoogle Scholar
  35. 35.
    Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70(2):546–550PubMedGoogle Scholar
  36. 36.
    Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21(3):654–659PubMedGoogle Scholar
  37. 37.
    Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T (1989) L-Lysine production in continuous culture of an L-lysine hyperproducing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol 32:269–273Google Scholar
  38. 38.
    Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210PubMedGoogle Scholar
  39. 39.
    Huhn S, Jolkver E, Krämer R, Marin K (2011) Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum. Appl Microbiol Biotechnol 89:327–335PubMedGoogle Scholar
  40. 40.
    Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisakova V, Patek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71(6):3255–3268PubMedGoogle Scholar
  41. 41.
    Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  42. 42.
    Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69(6):615–626PubMedGoogle Scholar
  43. 43.
    Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58(3):781–785PubMedGoogle Scholar
  44. 44.
    Ikeda M, Katsumata R (1994) Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 78(6):420–425Google Scholar
  45. 45.
    Ikeda M, Katsumata R (1995) Tryptophan production by transport mutants of Corynebacterium glutamicum. Biosci Biotechnol Biochem 59(8):1600–1602Google Scholar
  46. 46.
    Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65(6):2497–2502PubMedGoogle Scholar
  47. 47.
    Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2–3):99–109PubMedGoogle Scholar
  48. 48.
    Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotechnol Biochem 58(4):674–678PubMedGoogle Scholar
  49. 49.
    Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51(2):201–206PubMedGoogle Scholar
  50. 50.
    Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33(7):610–615PubMedGoogle Scholar
  51. 51.
    Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75(6):1635–1641PubMedGoogle Scholar
  52. 52.
    Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196PubMedGoogle Scholar
  53. 53.
    Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153(Pt 8):2491–2504PubMedGoogle Scholar
  54. 54.
    Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87(1):159–165PubMedGoogle Scholar
  55. 55.
    Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5(5):1197–1204PubMedGoogle Scholar
  56. 56.
    Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25PubMedGoogle Scholar
  57. 57.
    Katsumata R, Kino K (1989) Process for producing amino acids by fermentation. Japan Patent 01,317,395 AGoogle Scholar
  58. 58.
    Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428PubMedGoogle Scholar
  59. 59.
    Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77(5):1053–1062PubMedGoogle Scholar
  60. 60.
    Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75(11):3419–3429PubMedGoogle Scholar
  61. 61.
    Kelle R, Hermann T, Bathe B (2005) L-lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488Google Scholar
  62. 62.
    Kiefer P, Heinzle E, Wittmann C (2002) Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. J Ind Microbiol Biotechnol 28(6):338–343PubMedGoogle Scholar
  63. 63.
    Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70(1):229–239PubMedGoogle Scholar
  64. 64.
    Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2009) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:911–920PubMedGoogle Scholar
  65. 65.
    Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81(6):1097–1106PubMedGoogle Scholar
  66. 66.
    Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351PubMedGoogle Scholar
  67. 67.
    Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing pathway towards N-acetyl diaminopentane for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180PubMedGoogle Scholar
  68. 68.
    Kinoshita S, Shigezo U, Shimono M (1957) Studies on the amino acid fermentation: Part I: Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3(3):193–205Google Scholar
  69. 69.
    Kinoshita S, Nakayama K, Kitada S (1961) Method of producing L-lysine by fermentation. US Patent 2979439Google Scholar
  70. 70.
    Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597PubMedGoogle Scholar
  71. 71.
    Kohl TA, Tauch A (2009) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the Corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143:239–246PubMedGoogle Scholar
  72. 72.
    Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond – systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88(5):1065–1075PubMedGoogle Scholar
  73. 73.
    Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39(1):59–65PubMedGoogle Scholar
  74. 74.
    Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149(Pt 6):1569–1580PubMedGoogle Scholar
  75. 75.
    Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784PubMedGoogle Scholar
  76. 76.
    Krömer JO, Wittmann C, Schröder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(353–369)Google Scholar
  77. 77.
    Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154(Pt 12):3917–3930PubMedGoogle Scholar
  78. 78.
    Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23(1):41–61PubMedGoogle Scholar
  79. 79.
    Kusumoto K, Sakiyama M, Sakamoto J, Noguchi S, Sone N (2000) Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum. Arch Microbiol 173(5–6):390–397PubMedGoogle Scholar
  80. 80.
    Lee H-S (2005) Sulfur metabolism and its regulation. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press/Taylor & Francis, Boca Raton, pp 351–371Google Scholar
  81. 81.
    Lee SY, Park JH (2010) Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli. Adv Biochem Eng Biotechnol 88:1065–1075Google Scholar
  82. 82.
    Leuchtenberger W (1996) Amino acids -technical production and use. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol 6. VCH, Weinheim, pp 465–502Google Scholar
  83. 83.
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8PubMedGoogle Scholar
  84. 84.
    Li PP, Liu YJ, Liu SJ (2009) Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum. Microbiology 155(Pt 10):3382–3391PubMedGoogle Scholar
  85. 85.
    Marx A, Striegel K, de Graaf A, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56(2):168–180PubMedGoogle Scholar
  86. 86.
    Marx A, Hans S, Möckel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104(1–3):185–197PubMedGoogle Scholar
  87. 87.
    Matsumoto K, Yamada M, Leong CR, Jo SJ, Kuzuyama T, Taguchi S (2011) A new pathway for poly(3-hydroxybutyrate) production in Escherichia coli and Corynebacterium glutamicum by functional expression of a new acetoacetyl-coenzyme a synthase. Biosci Biotechnol Biochem 75(2):364–366PubMedGoogle Scholar
  88. 88.
    McAloon A, Taylor F, Yee W (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. National Renewable Energy Laboratory ReportGoogle Scholar
  89. 89.
    Melzer G, Esfandabadi ME, Franco-Lara E, Wittmann C (2009) Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120PubMedGoogle Scholar
  90. 90.
    Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135PubMedGoogle Scholar
  91. 91.
    Mondal S, Das YB, Chatterjee SP (1996) Methionine production by microorganisms. Folia Microbiol (Praha) 41(6):465–472Google Scholar
  92. 92.
    Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12(1–2):43–50PubMedGoogle Scholar
  93. 93.
    Morbach S, Kelle R, Winkels S, Sahm H, Eggeling L (1996) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 45:612–620Google Scholar
  94. 94.
    Morbach S, Sahm H, Eggeling L (1996) L-isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62(12):4345–4351PubMedGoogle Scholar
  95. 95.
    Munoz AJ, Hernandez-Chavez G, de Anda R, Martinez A, Bolivar F, Gosset G (2011) Metabolic engineering of Escherichia coli for improving L: -3,4-dihydroxyphenylalanine (L: -DOPA) synthesis from glucose. J Ind Microbiol Biotechnol 38:1845–1852PubMedGoogle Scholar
  96. 96.
    Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51(1):65–70PubMedGoogle Scholar
  97. 97.
    Nakayama K, Araki K (1973) Process for producing L-lysine. No US3708395 PatentGoogle Scholar
  98. 98.
    Nakayama K, Tanaka H, Hagino H, Kinoshita S (1966) Studies on lysine fermentation. V. Concerted feed-back inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micoroccus glutamicus. Agric Biol Chem 30:611–616Google Scholar
  99. 99.
    Nakayama K, Araki K, Kase H (1978) Microbial production of essential amino acid with Corynebacterium glutamicum mutants. Adv Exp Med Biol 105:649–661PubMedGoogle Scholar
  100. 100.
    Niimi S, Suzuki N, Inui M, Yukawa H (2011) Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1721–1729PubMedGoogle Scholar
  101. 101.
    Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58(2):217–223PubMedGoogle Scholar
  102. 102.
    Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242(2):265–274PubMedGoogle Scholar
  103. 103.
    Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480PubMedGoogle Scholar
  104. 104.
    Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454PubMedGoogle Scholar
  105. 105.
    Parche S, Burkovski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3(3):423–428PubMedGoogle Scholar
  106. 106.
    Park SD, Lee JY, Sim SY, Kim Y, Lee HS (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9(4):327–336PubMedGoogle Scholar
  107. 107.
    Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26(8):404–412PubMedGoogle Scholar
  108. 108.
    Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275(46):35932–35941PubMedGoogle Scholar
  109. 109.
    Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab Eng 3(4):344–361PubMedGoogle Scholar
  110. 110.
    Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3(2):295–300PubMedGoogle Scholar
  111. 111.
    Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl Microbiol Biotechnol 60(4):437–441PubMedGoogle Scholar
  112. 112.
    Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol 71(11):7139–7144PubMedGoogle Scholar
  113. 113.
    Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112PubMedGoogle Scholar
  114. 114.
    Pleiss J (2006) The promise of synthetic biology. Appl Microbiol Biotechnol 73(4):735–739PubMedGoogle Scholar
  115. 115.
    Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68(5):2246–2250PubMedGoogle Scholar
  116. 116.
    Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103(1):51–65PubMedGoogle Scholar
  117. 117.
    Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56(4):871–887PubMedGoogle Scholar
  118. 118.
    Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74(20):6216–6222PubMedGoogle Scholar
  119. 119.
    Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353PubMedGoogle Scholar
  120. 120.
    Sano K, Ito K, Miwa K, Nakamori S (1987) Amplification of the phosphoenol pyruvate carboxylase gene of Brevibacterium lactofermentum to improve amino acid production. Agric Biol Chem 51(2):597–599Google Scholar
  121. 121.
    Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115PubMedGoogle Scholar
  122. 122.
    Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106(1):51–58PubMedGoogle Scholar
  123. 123.
    Sawada K, Zen-In S, Wada M, Yokota A (2010) Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng 12:401–407PubMedGoogle Scholar
  124. 124.
    Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–869PubMedGoogle Scholar
  125. 125.
    Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198PubMedGoogle Scholar
  126. 126.
    Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124(2):381–391PubMedGoogle Scholar
  127. 127.
    Shiio I, Sano K (1969) Microbial producion of L-lysine. II. production by mutants sensitive to threonine or methionine. J Gen Appl Microbiol 15:267–287Google Scholar
  128. 128.
    Shiio I, Miyajima R, Nakagawa M (1972) Regulation of aromatic amino acid biosynthesis in Brevibacterium flavum. I. Regulation of anthranilate synthetase. J Biochem (Tokyo) 72(6):1447–1455Google Scholar
  129. 129.
    Shiio I, Sugimoto S, Yoshino H, Kawamura K (1990) Isolation and properties of threonine-producing mutants with both, dihydrodipicolinate-synthase defect and feddback-resistant homoserine dehydrogenase from Brevibacterium flavum. Agric Biol Chem 54(6):1505–1511Google Scholar
  130. 130.
    Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43PubMedGoogle Scholar
  131. 131.
    Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7(2):59–69PubMedGoogle Scholar
  132. 132.
    Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6:19PubMedGoogle Scholar
  133. 133.
    Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A (2005) Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71(5):2391–2402PubMedGoogle Scholar
  134. 134.
    Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055PubMedGoogle Scholar
  135. 135.
    Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213(3):1325–1331PubMedGoogle Scholar
  136. 136.
    Sonntag K, Schwinde J, de Graaf A, Marx A, Eikmanns B, Wiechert W, Sahm H (1995) 13C NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl Microbiol Biotechnol 44:489–495Google Scholar
  137. 137.
    Stäbler N, Oikawa T, Bott M, Eggeling L (2011) Corynebacterium glutamicum as a host for the synthesis and export of D-amino acids. J Bacteriol 193:1702–1709PubMedGoogle Scholar
  138. 138.
    Sugimoto S, Nakagawa M, Tsuchida T, Shiio I (1973) Regulation of aromatic amino acid biosynthesis and production of tyrosine and phenylalanine in Brevibacterium flavum. Agric Biol Chem 37(10):2327–2336Google Scholar
  139. 139.
    Tateno T, Fukuda H, Kondo A (2007) Production of L-Lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74(6):1213–1220PubMedGoogle Scholar
  140. 140.
    Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121PubMedGoogle Scholar
  141. 141.
    Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Rückert C, Schischka N, Wrenger C, Hoheisel J, Möckel B, Huthmacher K, Pfefferle W, Pühler A, Kalinowski J (2002) Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95(1):25–38PubMedGoogle Scholar
  142. 142.
    Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755PubMedGoogle Scholar
  143. 143.
    Uteza Y, Rouillot JS, Kobetz A, Marchant D, Pecqueur S, Arnaud E, Prats H, Honiger J, Dufier JL, Abitbol M, Neuner-Jehle M (1999) Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats. Proc Natl Acad Sci USA 96(6):3126–3131PubMedGoogle Scholar
  144. 144.
    Wagner H, Tanner H, Liebetanz E, Mannsfeld SP, Pfeiffer A (1970) Verfahren zur Herstellung von Methionin. German Patent 19 06 405Google Scholar
  145. 145.
    Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104(1–3):273–285PubMedGoogle Scholar
  146. 146.
    Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during co-utilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182(11):3088–3096PubMedGoogle Scholar
  147. 147.
    Willis LB, Lessard PA, Sinskey AJ (2005) Synthesis of L-threonine and branched-chain amino acids. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press/Taylor & Francis, Boca Raton, pp 511–531Google Scholar
  148. 148.
    Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49PubMedGoogle Scholar
  149. 149.
    Wittmann C, Becker J (2007) The L-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering, vol 5, Microbiol Monogr. Springer, Berlin/Heidelberg, pp 39–70Google Scholar
  150. 150.
    Wittmann C, Heinzle E (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur J Biochem 268(8):2441–2455PubMedGoogle Scholar
  151. 151.
    Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68(12):5843–5859PubMedGoogle Scholar
  152. 152.
    Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70(12):7277–7287PubMedGoogle Scholar
  153. 153.
    Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H (1997) The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72(3):167–172PubMedGoogle Scholar
  154. 154.
    Zeikus JG, Jain MK, Elankova P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552Google Scholar
  155. 155.
    Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ (2011) The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(6):2005–2013PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Judith Becker
    • 1
  • Stefanie Kind
    • 1
  • Christoph Wittmann
    • 1
  1. 1.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations