Systems Metabolic Engineering of Escherichia coli for Chemicals, Materials, Biofuels, and Pharmaceuticals

  • Dokyun Na
  • Jin Hwan Park
  • Yu-Sin Jang
  • Jeong Wook Lee
  • Sang Yup Lee


Microorganisms are small but efficient micro-factories for producing bulk and value-added products. Systems biology and synthetic biology advanced during the last decade are enabling us to unravel the underlying complicated intracellular and intercellular mechanisms, to comprehensively understand them as a whole, and to rationally reconstruct metabolic and gene regulatory networks for the optimized production of target materials including non-innate materials. Recent advances in these fields have opened a new way of metabolic engineering, termed systems metabolic engineering. In this article, we review the achievements in systems metabolic engineering for the production of chemical compounds and materials, biofuels, and pharmaceuticals in a widely used microbial platform factory, Escherichia coli.


Escherichia coli value-added products systems biology synthetic biology cell factory network reconstruction metabolic capability spider silk protein polyhydroxyalkanoate polylactic acid propanediol diamine putrescine cadaverine ethanol butanol isobutanol biodiesel hydrogen farnesol biofuel amino acids valine threonine isoprenoids artemisinin taxol pharmaceutical systems metabolic engineering computational model bio-materials polymer genome-scale model transcriptional profiling sustainable production bio-industry 


  1. 1.
    Ajikumar P, Xiao W, Tyo K, Wang Y, Simeon F, Leonard E, Mucha O, Phon T, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74PubMedCrossRefGoogle Scholar
  2. 2.
    Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267PubMedCrossRefGoogle Scholar
  3. 3.
    Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616PubMedCrossRefGoogle Scholar
  4. 4.
    Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65(3):1180–1185PubMedGoogle Scholar
  5. 5.
    Andersen F (1994) Final report on the safety assessment of propylene glycol and polypropylene glycols. J Am Coll Toxicol 13:437–491CrossRefGoogle Scholar
  6. 6.
    Atsumi S, Cann A, Connor M, Shen C, Smith K, Brynildsen M, Chou K, Hanai T, Liao J (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311PubMedCrossRefGoogle Scholar
  7. 7.
    Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142(1):70PubMedCrossRefGoogle Scholar
  8. 8.
    Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184(4133):174PubMedCrossRefGoogle Scholar
  9. 9.
    Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124(1):128–145PubMedCrossRefGoogle Scholar
  10. 10.
    Besumbes O, Sauret Gueto S, Phillips M, Imperial S, Rodriguez Concepcion M, Boronat A (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol Bioeng 88(2):168PubMedCrossRefGoogle Scholar
  11. 11.
    Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227PubMedCrossRefGoogle Scholar
  12. 12.
    Cervin MA, Soucaille P, Valle F (2008) Process for the biological production of 1,3-propanediol with high yield. United States Patent WO/2004/033646Google Scholar
  13. 13.
    Choi H, Kim S, Son J, Hong S, Lee H, Lee H (2000) Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis. Enzyme Microb Technol 27(8):593–598PubMedCrossRefGoogle Scholar
  14. 14.
    Eppelmann K, Nossin PMM, Kremer SM, Wubbolts MG (2006) Biochemical synthesis of 1,4-butanediamine. US Patent 2009/0275093Google Scholar
  15. 15.
    Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381PubMedCrossRefGoogle Scholar
  16. 16.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzalez R, Tao H, Purvis J, York S, Shanmugam K, Ingram L (2003) Gene array based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19(2):612–623PubMedCrossRefGoogle Scholar
  18. 18.
    Goodman J, Walsh V (2001) The story of taxol: nature and politics in the pursuit of an anti-cancer drug. Cambridge University Press, New YorkGoogle Scholar
  19. 19.
    Green E, Bennett G (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57(1):213–221PubMedCrossRefGoogle Scholar
  20. 20.
    Harris L, Desai R, Welker N, Papoutsakis E (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67(1):1–11PubMedCrossRefGoogle Scholar
  21. 21.
    Hong SH, Park SJ, Moon SY, Park JP, Lee SY (2003) In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng 83(7):854–863PubMedCrossRefGoogle Scholar
  22. 22.
    Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  23. 23.
    Joachimsthal E, Haggett K, Rogers P (1999) Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media. Appl Biochem Biotechnol 77(1):147–157CrossRefGoogle Scholar
  24. 24.
    Jung JY, Choi ES, Oh MK (2008) Enhanced production of 1,2-propanediol by tpil deletion in Saccharomyces cerevisiae. J Microbiol Biotechnol 18(11):1797–1802PubMedGoogle Scholar
  25. 25.
    Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171PubMedCrossRefGoogle Scholar
  26. 26.
    Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529PubMedCrossRefGoogle Scholar
  27. 27.
    Kind S, Wittmann S (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91(5):1287PubMedCrossRefGoogle Scholar
  28. 28.
    Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25(4):656PubMedCrossRefGoogle Scholar
  29. 29.
    Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(6):776–783CrossRefGoogle Scholar
  30. 30.
    Kotter P, Amore R, Hollenberg C, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18(6):493–500PubMedCrossRefGoogle Scholar
  31. 31.
    Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170PubMedCrossRefGoogle Scholar
  32. 32.
    Kuyper M, Hartog M, Toirkens M, Almering M, Winkler A, Dijken J, Pronk J (2005) Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409PubMedCrossRefGoogle Scholar
  33. 33.
    Lawrence AG, Schoenheit J, He AM, Tian JM, Liu PH, Stubbe JA, Sinskey AJ (2005) Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-3-hydroxybutyrate homeostasis during batch fermentation. Appl Microbiol Biotechnol 68(5):663–672PubMedCrossRefGoogle Scholar
  34. 34.
    Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14PubMedCrossRefGoogle Scholar
  35. 35.
    Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185(18):5442PubMedCrossRefGoogle Scholar
  36. 36.
    Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23(7):349–358PubMedCrossRefGoogle Scholar
  37. 37.
    Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149PubMedCrossRefGoogle Scholar
  38. 38.
    Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4(10):1432–1440PubMedCrossRefGoogle Scholar
  39. 39.
    Lee J, Sung B, Kim M, Blattner F, Yoon B, Kim J, Kim S (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8(1):2PubMedCrossRefGoogle Scholar
  40. 40.
    Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci-Polym Rev C45(4):325–349CrossRefGoogle Scholar
  41. 41.
    Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductases (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323PubMedCrossRefGoogle Scholar
  42. 42.
    Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84(6):1003PubMedCrossRefGoogle Scholar
  43. 43.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  44. 44.
    Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459PubMedCrossRefGoogle Scholar
  45. 45.
    Ohta K, Beall D, Mejia J, Shanmugam K, Ingram L (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893PubMedGoogle Scholar
  46. 46.
    Omenetto F, Kaplan D (2010) New opportunities for an ancient material. Science 329(5991):528PubMedCrossRefGoogle Scholar
  47. 47.
    Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–7802PubMedCrossRefGoogle Scholar
  48. 48.
    Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26(8):404–412PubMedCrossRefGoogle Scholar
  49. 49.
    Park JH, Kim TY, Lee KH, Lee SY (2011) Fed batch culture of Escherichia coli for L valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946PubMedCrossRefGoogle Scholar
  50. 50.
    Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147PubMedCrossRefGoogle Scholar
  51. 51.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  52. 52.
    Posfai G, Plunkett G III, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046PubMedCrossRefGoogle Scholar
  53. 53.
    Qian Z-G, Xia X-X, Lee SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104(4):651–662PubMedGoogle Scholar
  54. 54.
    Raita M, Laothanachareon T, Champreda V, Laosiripojana N (2011) Biocatalytic esterification of palm oil fatty acids for biodiesel production using glycine-based cross-linked protein coated microcrystalline lipase. J Mol Catal B Enzym 73(1–4):74–79. doi: 10.1016/j.molcatb.2011.07.020 CrossRefGoogle Scholar
  55. 55.
    Rizzi M, Erlemann P, Bui-Thanh N, Dellweg H (1988) Xylose fermentation by yeasts. Appl Microbiol Biotechnol 29(2):148–154CrossRefGoogle Scholar
  56. 56.
    Rizzi M, Harwart K, Erlemann P, Bui-Thanh N, Dellweg H (1989) Purification and properties of the NAD + −xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67(1):20–24CrossRefGoogle Scholar
  57. 57.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943PubMedCrossRefGoogle Scholar
  58. 58.
    Sanders J, Scott E, Weusthuis R, Mooibroek H (2007) Bio-refinery as the bio-inspired process to bulk chemicals. Macromol Biosci 7(2):105–117PubMedCrossRefGoogle Scholar
  59. 59.
    Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868PubMedCrossRefGoogle Scholar
  60. 60.
    Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products – the use of proteins and amino acids. Appl Microbiol Biotechnol 75(4):751–762PubMedCrossRefGoogle Scholar
  61. 61.
    Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) High titer anaerobic 1-butanol synthesis in Escherichia coli enabled by driving forces. Appl Environ Microbiol. doi: 10.1128/AEM.03034-10
  62. 62.
    Shimoji M, Yin H, Higgins L, Jones JP (1998) Design of a novel P450: a functional bacterial-human cytochrome P450 chimera. Biochemistry 37(25):8848–8852PubMedCrossRefGoogle Scholar
  63. 63.
    Soucaille P, Voelker F, Figge R (2008) New microorganisms for the production of 1,2-propanediol obtained by a combination of evolution and rational design. WO2008/116852Google Scholar
  64. 64.
    Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44(12):4727–4736PubMedCrossRefGoogle Scholar
  65. 65.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre SB, Keasling JD (2009) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559CrossRefGoogle Scholar
  66. 66.
    Tabor C, Tabor H (1985) Polyamines in microorganisms. Microbiol Mol Biol Rev 49(1):81Google Scholar
  67. 67.
    Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75(2):83–88CrossRefGoogle Scholar
  68. 68.
    Toivari M, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3(3):236–249PubMedCrossRefGoogle Scholar
  69. 69.
    Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S (2010) Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-010-0920-5
  71. 71.
    Wang C, Yoon SH, Shah AA, Chung YR, Kim JY, Choi ES, Keasling JD, Kim SW (2010) Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng 107(3):421PubMedCrossRefGoogle Scholar
  72. 72.
    Wani M, Taylor H, Wall M, Coggon P, McPhail A (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327PubMedCrossRefGoogle Scholar
  73. 73.
    Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107(32):14059–14063PubMedCrossRefGoogle Scholar
  74. 74.
    Yang TH, Kim TW, Kang HO, Lee S-H, Lee EJ, Lim S-C, Oh SO, Song A-J, Park SJ, Lee SY (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105(1):150–160PubMedCrossRefGoogle Scholar
  75. 75.
    Yomano L, York S, Shanmugam K, Ingram L (2009) Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31(9):1389–1398PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267(5195):240PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:1CrossRefGoogle Scholar
  79. 79.
    Zhong J-J (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94(6):591–599PubMedGoogle Scholar
  80. 80.
    Zhou S, Iverson A, Grayburn W (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30(2):335–342PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Dokyun Na
    • 1
    • 2
  • Jin Hwan Park
    • 1
    • 2
  • Yu-Sin Jang
    • 1
    • 2
  • Jeong Wook Lee
    • 1
    • 2
  • Sang Yup Lee
    • 3
  1. 1.Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research CenterKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
  2. 2.Center for Systems and Synthetic BiotechnologyInstitute for the BioCentury, KAISTDaejeonSouth Korea
  3. 3.Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic BiotechnologyInstitute for the BioCentury, KAISTDaejeonRepublic of Korea

Personalised recommendations