Technologies for Biosystems Engineering

  • Sonja Billerbeck
  • Sven Dietz
  • Gaspar Morgado
  • Sven Panke


The rising knowledge for a variety of model organisms about chromosome compositions, gene regulation and molecular interactions which influence cell development and biological systems behavior drives an engineering effort to design and construct ever more complex novel molecular or cellular functions and behaviors. As molecular functions are encoded on DNA level, engineering of new and complex systems starts with the engineering of its encoding DNA. Although methods for genetic engineering are available since decades, their focus was the modification of rather small systems, such as cloning or modifying single genes. Therefore, the engineering of complex biological systems on DNA level, involving multiple genes up to multiple pathways or even entire genomes, requires revisiting the general usefulness of available methods and their potential for scalability. Here we review available methods and their applicability for biosystems engineering approaches as well as recent technological advances which expand the toolbox for understanding and engineering complex biological systems with novel traits.


Biosystems engineering De-novo gene synthesis Gene and genome assembly Parts Streamlined genomes 



The authors wish to acknowledge support from the EU (FP6 projects NANOMOT and EMERGENCE, FP7 project ST-FLOW), and from the ESF/SNF (EuroCORE project Nanocell). G.M. is a holder of Becas Chile-scholarship (granted by CONICYT-Government of Chile).


  1. 1.
    Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27:1151–1162PubMedGoogle Scholar
  2. 2.
    Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ (2009) Synthetic gene networks that count. Science 324:1199–1202PubMedGoogle Scholar
  3. 3.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134PubMedGoogle Scholar
  4. 4.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342PubMedGoogle Scholar
  5. 5.
    Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137:1272–1281PubMedGoogle Scholar
  6. 6.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedGoogle Scholar
  7. 7.
    Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74PubMedGoogle Scholar
  8. 8.
    Bujara M, Schumperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7(5):271–277. doi:nchembio.541 [pii] 10.1038/nchembio.541 PubMedGoogle Scholar
  9. 9.
    Agarwal KL, Büchi H, Caruthers MH, Gupta NK, Khorana HG, Kleppe K, Kumar A, Ohtsuka E, RajBhandary EL, van de Dande JH, Sgaramella V, Weber H, Yamada T (1970) Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227:27–34PubMedGoogle Scholar
  10. 10.
    Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198:1056–1063PubMedGoogle Scholar
  11. 11.
    Khorana HG (1979) Total synthesis of a gene. Science 203:614–625PubMedGoogle Scholar
  12. 12.
    Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018PubMedGoogle Scholar
  13. 13.
    Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100(26):15440–15445PubMedGoogle Scholar
  14. 14.
    Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA 101(44):15573–15578PubMedGoogle Scholar
  15. 15.
    Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432(7020):1050–1054PubMedGoogle Scholar
  16. 16.
    Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323PubMedGoogle Scholar
  17. 17.
    Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, García-Sastre A (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80PubMedGoogle Scholar
  18. 18.
    Gibson DG, Benders G, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mcyoplasma genitalium genome. Science 319:1215–1220. doi: 10.1126/science.1151721 PubMedGoogle Scholar
  19. 19.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi Z-Q, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56. doi: 10.1126/science.1190719 PubMedGoogle Scholar
  20. 20.
    Carlson R (2009) The changing economics of DNA synthesis. Nat Biotechnol 27:1091–1094PubMedGoogle Scholar
  21. 21.
    Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299PubMedGoogle Scholar
  22. 22.
    Lausted C, Dahl T, Warren C, King K, Smith K, Johnson M, Saleem R, Aitchison J, Hood L, Lasky SR (2004) POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer. Genome Biol 5:R58PubMedGoogle Scholar
  23. 23.
    Egeland RD, Southern EM (2005) Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication. Nucleic Acids Res 33:e125PubMedGoogle Scholar
  24. 24.
    Quan J, Saaem I, Tang N, Ma S, Negre N, Gong H, White KP, Tian J (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29(5):449–452. doi:nbt.1847 [pii] 10.1038/nbt.1847 PubMedGoogle Scholar
  25. 25.
    Tian J, Ma K, Saaem I (2009) Advancing high-throughput gene synthesis technology. Mol Biosyst 5:714–722PubMedGoogle Scholar
  26. 26.
    LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540PubMedGoogle Scholar
  27. 27.
    Sierzchala AB, Dellinger DJ, Betley JR, Wyrzykiewicz TK, Yamada CM, Caruthers MH (2003) Solid-phase oligodeoxynucleotide synthesis: a two-step cycle using peroxy anion deprotection. J Am Chem Soc 125:13427–13441PubMedGoogle Scholar
  28. 28.
    Greger B, Kemper B (1998) An apyrimidinic site kinks DNA and triggers incision by endonuclease VII of phage T4. Nucleic Acids Res 26:4432–4438PubMedGoogle Scholar
  29. 29.
    Smith J, Modrich P (1997) Removal of polymerase-produced mutant sequences from PCR products. Proc Natl Acad Sci USA 94(13):6847–6850PubMedGoogle Scholar
  30. 30.
    Kim H, Han H, Shin D, Bang D (2010) A fluorescence selection method for accurate large-gene synthesis. Chembiochem 11:2448–2452. doi: 10.1002/cbic.201000368 PubMedGoogle Scholar
  31. 31.
    Linshiz G, Yehezkel TB, Kaplan S, Gronau I, Ravid S, Adar R, Shapiro E (2008) Recursive construction of perfect DNA molecules from imperfect oligonucleotides. Mol Syst Biol 4:191. doi: 10.1038/msb.2008.26 PubMedGoogle Scholar
  32. 32.
    Matzas M, Stähler PF, Kefer N, Siebelt N, Boisguérin V, Leonard JT, Keller A, Cord F, Stähler PH, Gharizadeh B, Babrzadeh F, Church GM (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol 28:1291–1294PubMedGoogle Scholar
  33. 33.
    Xiong A-S, Peng R-H, Zhuang J, Gao F, Li Y, Cheng Z-M, Yao Q-H (2008) Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol Rev 32:522–540PubMedGoogle Scholar
  34. 34.
    Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1):49–53PubMedGoogle Scholar
  35. 35.
    Gao X, Yo P, Keith A, Ragan TJ, Harris TK (2003) Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high fidelity assembly of longer gene sequences. Nucleic Acids Res 31:e143PubMedGoogle Scholar
  36. 36.
    Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3(2):109–118. doi: 10.1039/c0ib00070a Google Scholar
  37. 37.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950PubMedGoogle Scholar
  38. 38.
    Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032PubMedGoogle Scholar
  39. 39.
    Smolke CD, Keasling JD (2002) Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 80(7):762–776. doi: 10.1002/bit.10434 PubMedGoogle Scholar
  40. 40.
    Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68. doi:0378-1119(89)90359-4 [pii] PubMedGoogle Scholar
  41. 41.
    Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91(22):10747–10751PubMedGoogle Scholar
  42. 42.
    Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7):e6441. doi: 10.1371/journal.pone.0006441 PubMedGoogle Scholar
  43. 43.
    Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6(2):242–251. doi:nprot.2010.181 [pii] 10.1038/nprot.2010.181 PubMedGoogle Scholar
  44. 44.
    Pachuk CJ, Samuel M, Zurawski JA, Snyder L, Phillips P, Satishchandran C (2000) Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene 243(1–2):19–25. doi:S0378-1119(99)00508-9 [pii]PubMedGoogle Scholar
  45. 45.
    Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35(7):e55. doi:gkm106 [pii] 10.1093/nar/gkm106 PubMedGoogle Scholar
  46. 46.
    Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256. doi:nmeth1010 [pii] 10.1038/nmeth1010 PubMedGoogle Scholar
  47. 47.
    Peisajovich SG, Garbarino JE, Wei P, Lim WA (2010) Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 328(5976):368–372. doi:328/5976/368 [pii] 10.1126/science.1182376 PubMedGoogle Scholar
  48. 48.
    Nisson PE, Rashtchian A, Watkins PC (1991) Rapid and efficient cloning of Alu-PCR products using uracil DNA glycosylase. PCR Methods Appl 1(2):120–123PubMedGoogle Scholar
  49. 49.
    Nour-Eldin HH, Hansen BG, Norholm MH, Jensen JK, Halkier BA (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34(18):e122. doi:gkl635 [pii] 10.1093/nar/gkl635 PubMedGoogle Scholar
  50. 50.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:nmeth.1318 [pii] 10.1038/nmeth.1318 PubMedGoogle Scholar
  51. 51.
    Ramon A, Smith HO (2011) Single-step linker-based combinatorial assembly of promoter and gene cassettes for pathway engineering. Biotechnol Lett 33(3):549–555. doi: 10.1007/s10529-010-0455-x PubMedGoogle Scholar
  52. 52.
    Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR, Resnick MA (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93(1):491–496PubMedGoogle Scholar
  53. 53.
    Tsuge K, Matsui K, Itaya M (2003) One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31(21):e133PubMedGoogle Scholar
  54. 54.
    Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78(10):6354–6358PubMedGoogle Scholar
  55. 55.
    Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25(2):451–452. doi:gka088 [pii] PubMedGoogle Scholar
  56. 56.
    Hua SB, Luo Y, Qiu M, Chan E, Zhou H, Zhu L (1998) Construction of a modular yeast two-hybrid cDNA library from human EST clones for the human genome protein linkage map. Gene 215(1):143–152. doi:S0378-1119(98)00258-3 [pii] PubMedGoogle Scholar
  57. 57.
    Schaerer-Brodbeck C, Barberis A (2004) Coupling homologous recombination with growth selection in yeast: a tool for construction of random DNA sequence libraries. Biotechniques 37(2):202–206PubMedGoogle Scholar
  58. 58.
    Shao Z, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37(2):e16. doi:gkn991 [pii] 10.1093/nar/gkn991 PubMedGoogle Scholar
  59. 59.
    Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 5(1):41–43. doi:nmeth1143 [pii] 10.1038/nmeth1143 PubMedGoogle Scholar
  60. 60.
    Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453PubMedGoogle Scholar
  61. 61.
    Clancy K, Voigt CA (2010) Programming cells: towards an automated ‘Genetic Compiler’. Curr Opin Biotechnol 21(4):572–581. doi:S0958-1669(10)00124-2 [pii] 10.1016/j.copbio.2010.07.005 PubMedGoogle Scholar
  62. 62.
    Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102(36):12678–12683. doi:0504604102 [pii] 10.1073/pnas.0504604102 PubMedGoogle Scholar
  63. 63.
    Murphy KF, Balazsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci USA 104(31):12726–12731. doi:0608451104 [pii] 10.1073/pnas.0608451104 PubMedGoogle Scholar
  64. 64.
    Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793. doi: 10.1038/nbt1413 PubMedGoogle Scholar
  65. 65.
    Murphy KF, Adams RM, Wang X, Balazsi G, Collins JJ (2010) Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res 38(8):2712–2726. doi:gkq091 [pii] 10.1093/nar/gkq091 PubMedGoogle Scholar
  66. 66.
    Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27(5):465–471. doi:nbt.1536 [pii] 10.1038/nbt.1536 PubMedGoogle Scholar
  67. 67.
    Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72(8):5266–5273. doi:72/8/5266 [pii] 10.1128/AEM.00530-06 PubMedGoogle Scholar
  68. 68.
    Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219(1):45–59PubMedGoogle Scholar
  69. 69.
    Kobayashi M, Nagata K, Ishihama A (1990) Promoter selectivity of Escherichia coli RNA polymerase: effect of base substitutions in the promoter −35 region on promoter strength. Nucleic Acids Res 18(24):7367–7372PubMedGoogle Scholar
  70. 70.
    Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87PubMedGoogle Scholar
  71. 71.
    Hsu LM, Cobb IM, Ozmore JR, Khoo M, Nahm G, Xia L, Bao Y, Ahn C (2006) Initial transcribed sequence mutations specifically affect promoter escape properties. Biochemistry 45(29):8841–8854. doi: 10.1021/bi060247u PubMedGoogle Scholar
  72. 72.
    Cox RS 3rd, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145. doi:msb4100187 [pii] 10.1038/msb4100187 PubMedGoogle Scholar
  73. 73.
    De Mey M, Maertens J, Lequeux GJ, Soetaert WK, Vandamme EJ (2007) Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol 7:34. doi:1472-6750-7-34 [pii] 10.1186/1472-6750-7-34 PubMedGoogle Scholar
  74. 74.
    Krueger M, Scholz O, Wisshak S, Hillen W (2007) Engineered Tet repressors with recognition specificity for the tetO-4C5G operator variant. Gene 404(1–2):93–100. doi:S0378-1119(07)00462-3 [pii] 10.1016/j.gene.2007.09.002 PubMedGoogle Scholar
  75. 75.
    Antunes LC, Ferreira RB, Lostroh CP, Greenberg EP (2008) A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol 190(13):4392–4397. doi:JB.01443-07 [pii] 10.1128/JB.01443-07 PubMedGoogle Scholar
  76. 76.
    Braatsch S, Helmark S, Kranz H, Koebmann B, Jensen PR (2008) Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. Biotechniques 45(3):335–337. doi:000112907 [pii] 10.2144/000112907 PubMedGoogle Scholar
  77. 77.
    Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457(7226):215–218. doi:nature07521 [pii] 10.1038/nature07521 PubMedGoogle Scholar
  78. 78.
    Mogno I, Vallania F, Mitra RD, Cohen BA (2010) TATA is a modular component of synthetic promoters. Genome Res 20(10):1391–1397. doi:gr.106732.110 [pii] 10.1101/gr.106732.110 PubMedGoogle Scholar
  79. 79.
    Leveau JH, Lindow SE (2001) Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J Bacteriol 183(23):6752–6762. doi: 10.1128/JB.183.23.6752-6762.2001 PubMedGoogle Scholar
  80. 80.
    Tyo KE, Nevoigt E, Stephanopoulos G (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol 497:135–155. doi:B978-0-12-385075-1.00006-8 [pii] 10.1016/B978-0-12-385075-1.00006-8 PubMedGoogle Scholar
  81. 81.
    Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G (2007) Engineering promoter regulation. Biotechnol Bioeng 96(3):550–558. doi: 10.1002/bit.21129 PubMedGoogle Scholar
  82. 82.
    Imburgio D, Rong M, Ma K, McAllister WT (2000) Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 39(34):10419–10430. doi:bi000365w [pii] PubMedGoogle Scholar
  83. 83.
    Jensen K, Alper H, Fischer C, Stephanopoulos G (2006) Identifying functionally important mutations from phenotypically diverse sequence data. Appl Environ Microbiol 72(5):3696–3701. doi:72/5/3696 [pii] 10.1128/AEM.72.5.3696-3701.2006 PubMedGoogle Scholar
  84. 84.
    Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci USA 100(9):5136–5141. doi:10.1073/pnas.0930314100 0930314100 [pii] PubMedGoogle Scholar
  85. 85.
    Liang G, Li Z (2007) Scores of generalized base properties for quantitative sequence-activity modelings for E. coli promoters based on support vector machine. J Mol Graph Model 26(1):269–281. doi:doi:S1093-3263(06)00147-1 [pii] 10.1016/j.jmgm.2006.12.004 PubMedGoogle Scholar
  86. 86.
    Rhodius VA, Mutalik VK (2010) Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE. Proc Natl Acad Sci USA 107(7):2854–2859. doi:0915066107 [pii] 10.1073/pnas.0915066107 PubMedGoogle Scholar
  87. 87.
    Hardiman T, Meinhold H, Hofmann J, Ewald JC, Siemann-Herzberg M, Reuss M (2010) Prediction of kinetic parameters from DNA-binding site sequences for modeling global transcription dynamics in Escherichia coli. Metab Eng 12(3):196–211. doi:S1096-7176(09)00092-5 [pii] 10.1016/j.ymben.2009.10.006 PubMedGoogle Scholar
  88. 88.
    Anand R, Rai N, Thattai M (2011) Promoter reliability in modular transcriptional networks. Methods Enzymol 497:31–49PubMedGoogle Scholar
  89. 89.
    Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141PubMedGoogle Scholar
  90. 90.
    Goltermann L, Jensen MB, Bentin T (2011) Tuning protein expression using synonymous codon libraries targeted to the 50 mRNA coding region. Protein Eng Des Sel 24:123–129PubMedGoogle Scholar
  91. 91.
    Na D, Lee S, Lee D (2010) Mathematical modelling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst Biol 4:71PubMedGoogle Scholar
  92. 92.
    Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634PubMedGoogle Scholar
  93. 93.
    Sneppen K, Dodd IB, Shearwin KE, Palmer AC, Schubert RA, Callen BP, Egan JB (2005) A mathematical model for transcriptional interference by RNA polymerase traffic in Escherichia coli. J Mol Biol 346(2):399–409. doi:S0022-2836(04)01556-6 [pii] 10.1016/j.jmb.2004.11.075 PubMedGoogle Scholar
  94. 94.
    Macdonald LE, Durbin RK, Dunn JJ, McAllister WT (1994) Characterization of two types of termination signal for bacteriophage T7 RNA polymerase. J Mol Biol 238(2):145–158. doi:S0022-2836(84)71277-0 [pii] 10.1006/jmbi.1994.1277 PubMedGoogle Scholar
  95. 95.
    Macdonald LE, Zhou Y, McAllister WT (1993) Termination and slippage by bacteriophage T7 RNA polymerase. J Bacteriol 232(4):1030–1047. doi:S0022-2836(83)71458-0 [pii] 10.1006/jmbi.1993.1458 Google Scholar
  96. 96.
    Du L, Gao R, Forster AC (2009) Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol Bioeng 104(6):1189–1196. doi: 10.1002/bit.22491 PubMedGoogle Scholar
  97. 97.
    Cheng SW, Lynch EC, Leason KR, Court DL, Shapiro BA, Friedman DI (1991) Functional importance of sequence in the stem-loop of a transcription terminator. Science 254(5035):1205–1207PubMedGoogle Scholar
  98. 98.
    Wilson KS, von Hippel PH (1995) Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci USA 92(19):8793–8797PubMedGoogle Scholar
  99. 99.
    Lynn SP, Kasper LM, Gardner JF (1988) Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J Biol Chem 263(1):472–479PubMedGoogle Scholar
  100. 100.
    Christie GE, Farnham PJ, Platt T (1981) Synthetic sites for transcription termination and a functional comparison with tryptophan operon termination sites in vitro. Proc Natl Acad Sci USA 78(7):4180–4184PubMedGoogle Scholar
  101. 101.
    Reynolds R, Chamberlin MJ (1992) Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J Mol Biol 224(1):53–63. doi:0022-2836(92)90575-5 [pii] PubMedGoogle Scholar
  102. 102.
    d’Aubenton Carafa Y, Brody E, Thermes C (1990) Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol 216(4):835–858PubMedGoogle Scholar
  103. 103.
    Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132(6):971–982. doi:S0092-8674(08)00127-X [pii] 10.1016/j.cell.2008.01.027 PubMedGoogle Scholar
  104. 104.
    Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24:545–554PubMedGoogle Scholar
  105. 105.
    Deans TL, Cantor CR, Collins JJ (2007) A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130:363–372PubMedGoogle Scholar
  106. 106.
    Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25:795–801PubMedGoogle Scholar
  107. 107.
    Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460PubMedGoogle Scholar
  108. 108.
    Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343PubMedGoogle Scholar
  109. 109.
    Culler SJ, Hoff KG, Smolke CD (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330:1251–1255PubMedGoogle Scholar
  110. 110.
    Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7:471. doi: 10.1038/msb.2011.4 PubMedGoogle Scholar
  111. 111.
    Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 104(36):14283–14288. doi: 10.1073/pnas.0703961104 PubMedGoogle Scholar
  112. 112.
    MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan G-BV (2011) Computational design approaches and tools for synthetic biology. Integr Biol 3:97–108Google Scholar
  113. 113.
    Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422PubMedGoogle Scholar
  114. 114.
    Kim J, Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465PubMedGoogle Scholar
  115. 115.
    Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 7:466PubMedGoogle Scholar
  116. 116.
    Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108:3473–3480PubMedGoogle Scholar
  117. 117.
    Foley PL, Shuler ML (2010) Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng 105:26–36PubMedGoogle Scholar
  118. 118.
    Dietz S, Panke S (2010) Microbial systems engineering: first successes and the way ahead. BioEssays 32(4):356–362PubMedGoogle Scholar
  119. 119.
    Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328(5977):498–501. doi:328/5977/498 [pii] 10.1126/science.1185757 PubMedGoogle Scholar
  120. 120.
    Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568. doi:314/5805/1565 [pii] 10.1126/science.1131969 PubMedGoogle Scholar
  121. 121.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. doi:nature08187 [pii] 10.1038/nature08187 PubMedGoogle Scholar
  122. 122.
    Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR (1989) New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171(9):4617–4622PubMedGoogle Scholar
  123. 123.
    Blomfield IC, Vaughn V, Rest RF, Eisenstein BI (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5(6):1447–1457PubMedGoogle Scholar
  124. 124.
    Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179(20):6228–6237PubMedGoogle Scholar
  125. 125.
    Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27(22):4409–4415PubMedGoogle Scholar
  126. 126.
    Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071PubMedGoogle Scholar
  127. 127.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645PubMedGoogle Scholar
  128. 128.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 0008. doi:msb4100050 [pii] 10.1038/msb4100050 Google Scholar
  129. 129.
    Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ (2008) Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133(1):90–102. doi:S0092-8674(08)00209-2 [pii] 10.1016/j.cell.2008.01.044 PubMedGoogle Scholar
  130. 130.
    Kolisnychenko V, Plunkett G, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12(4):640–647. doi: 10.1101/gr.217202 PubMedGoogle Scholar
  131. 131.
    Mizoguchi H, Mori H, Fujio T (2007) Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):157–167. doi:BA20060107 [pii] 10.1042/BA20060107 PubMedGoogle Scholar
  132. 132.
    Posfai G, Plunkett G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046. doi:1126439 [pii] 10.1126/science.1126439 PubMedGoogle Scholar
  133. 133.
    Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13(4):644–653PubMedGoogle Scholar
  134. 134.
    Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023PubMedGoogle Scholar
  135. 135.
    Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, J-i K (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55(1):137–149PubMedGoogle Scholar
  136. 136.
    Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46:169–178. doi: 10.1042/BA20060111 PubMedGoogle Scholar
  137. 137.
    Morimoto T, Kadoya R, Endo K, Sawada MTK, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyawa Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasarawa N (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81PubMedGoogle Scholar
  138. 138.
    Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20(12):2076–2090PubMedGoogle Scholar
  139. 139.
    Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9:133–141PubMedGoogle Scholar
  140. 140.
    Chakiath CS, Esposito D (2007) Improved recombinational stability of lentiviral expression vectors using reduced-genome Escherichia coli. Biotechniques 43(4):466, 468, 470. doi:000112585 [pii]Google Scholar
  141. 141.
    Umenhoffer K, Fehér T, Balikó G, Ayaydin F, Blattner JPFR, Pósfai G (2010) Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Fact 9:38PubMedGoogle Scholar
  142. 142.
    Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8:2PubMedGoogle Scholar
  143. 143.
    Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643PubMedGoogle Scholar
  144. 144.
    Heinemann M, Panke S (2006) Synthetic biology – putting engineering into biology. Bioinformatics 22:2790–2799PubMedGoogle Scholar
  145. 145.
    Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837. doi:nrg1471 [pii] 10.1038/nrg1471 PubMedGoogle Scholar
  146. 146.
    Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68(3):518–537PubMedGoogle Scholar
  147. 147.
    Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA III, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103(2):425–430PubMedGoogle Scholar
  148. 148.
    Bayer TS (2010) Transforming biosynthesis into an information science. Nat Chem Biol 6:859–861PubMedGoogle Scholar
  149. 149.
    Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759PubMedGoogle Scholar
  150. 150.
    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444PubMedGoogle Scholar
  151. 151.
    Wörsdörfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331:589–592PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sonja Billerbeck
    • 1
  • Sven Dietz
    • 1
  • Gaspar Morgado
    • 1
  • Sven Panke
    • 1
  1. 1.Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland

Personalised recommendations