Design of Superior Cell Factories for a Sustainable Biorefinery By Synthetic Bioengineering

Chapter

Abstract

To build an energy and material secure future, we must pioneer the next generation of renewable fuels and chemicals using environmentally benign production processes. Since biomass represents an abundant carbon-neutral renewable resource for the production of biofuels, numerous environmental and social benefits could result from the replacement of petroleum-based transport fuels with bioethanol converted from biomass. One of the key technologies for the development of biorefineries is cell surface engineering, which is a powerful tool for engineering and functionalizing many organisms. Using the technology, various kinds of functional proteins, such as enzymes, can be expressed on the cell surface without loss of cell activity. The display of amylolytic and cellulolytic enzymes on the surface of Saccharomyces cerevisiae has accomplished direct ethanol production from starchy and cellulosic biomass. Moreover, the display of hemicellulase on the surface of S. cerevisiae that has a xylose-assimilating metabolic pathway has enabled production of ethanol from hemicellulosic materials. Furthermore, reutilization of the cell-surface engineered yeast has an advantage in the reduction of enzyme cost, which enables reuse of enzymes on the cell surface by collecting the cells. Thus, cell surface engineering is a promising technology for the development of a consolidated bioprocess by integrating enzyme production, saccharification and fermentation. Regardless of the biomass hydrolysis, metabolic engineering of microorganisms is emphasized for the efficient production of ethanol from biomass. Specifically, lignocellulosic hydrolysates contain high concentrations of inhibitors that negatively affect metabolism and ethanol yields. To circumvent these difficulties, robust S. cerevisiae strains that efficiently ferment mixtures of hexose and pentose sugars in the presence of various chemical contexts for industrial ethanol production should be constructed through metabolic engineering approaches. A combination of a cell-surface displayed enzyme system and an intracellular metabolic engineering system is a very effective approach for developing cells with improved fermentation ability for industrial applications. The technology (synthetic bioengineering) will open up new applications of cell factories to industrially important processes.

Keywords

Cell factory Sustainability Biorefinery Synthetic bioengineering Bioethanol Biofuels Surface engineering Metabolic engineering Metabolomics Tolerance Renewable resources Saccharomyces cerevisiae Lignocellulosic biomass Saccharification Sugars Industrial feedstocks Consolidated bioprocessing (CBP) Whole-cell biocatalyst Glucoamylase Trichoderma Yeast Pretreatment Microbial inhibitors 

References

  1. 1.
    Bungay HR (1981) Energy, The Biomass Options. Wiley, New YorkGoogle Scholar
  2. 2.
    Renewable Fuels Association. Industry statistics. 2007. http://www.eth-anolrfa.org/industry/statistics/(September 2007)
  3. 3.
    Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295PubMedGoogle Scholar
  4. 4.
    Wilkie AC, Riedesel KJ, Owend JM (2000) Stilage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feed stocks. Biomass Bioenerg 19:63–102Google Scholar
  5. 5.
    Classen PAM, van Lier JB, Lopez Contreras AM, van Neil EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilization of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755Google Scholar
  6. 6.
    Lee WG, Huang C (2000) Modelling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem Eng J 4:217–227Google Scholar
  7. 7.
    Ashikari T, Kunisaki N, Matsumoto T, Amachi T, Yoshizumi H (1989) Direct fermentation of raw corn starch to ethanol by yeast transformants containing a modified Rhizopus glucoamylase gene. Appl Microbiol Biotechnol 32:129–133Google Scholar
  8. 8.
    Inlow D, McRae J, Ben-Bassat A (1988) Fermentation of corn starch to ethanol with genetically engineered yeast. Biotechnol Bioeng 32:227–234PubMedGoogle Scholar
  9. 9.
    Birol G, Onsan ZI, Kirdar B, Oliver SG (1998) Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb Technol 22:672–677Google Scholar
  10. 10.
    de Moreas L, Astolfi-Filho S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express alpha amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076Google Scholar
  11. 11.
    Eksteen JM, van Rensburg P, Cordero Otero RR, Pretorius IS (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomyces fibuligera. Biotechnol Bioeng 84:639–646PubMedGoogle Scholar
  12. 12.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedGoogle Scholar
  13. 13.
    Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296PubMedGoogle Scholar
  14. 14.
    Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861PubMedGoogle Scholar
  15. 15.
    Nakamura Y, Shibasaki S, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol 57:500–505PubMedGoogle Scholar
  16. 16.
    Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120PubMedGoogle Scholar
  17. 17.
    Kondo A, Ueda M (2004) Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64:28–40PubMedGoogle Scholar
  18. 18.
    Murai T, Ueda M, Yamamura Y, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366PubMedGoogle Scholar
  19. 19.
    Ueda M, Murai T, Shibasaki Y, Kamasawa N, Osumi M, Tanaka A (1998) Molecular breeding of polysaccharide-utilizing yeast cells by surface engineering. Ann N Y Acad Sci 13(864):528–537Google Scholar
  20. 20.
    Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140PubMedGoogle Scholar
  21. 21.
    Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206PubMedGoogle Scholar
  22. 22.
    Watari J, Takata Y, Ogawa M, Sahara H, Koshino M, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225PubMedGoogle Scholar
  23. 23.
    Cappellaro C, Hauser K, Mrśa V, Watzele M, Watzele G, Gruber C, Tanner W (1991) Saccharomyces cerevisiae a- and α-agglutinin: characterization of their molecular interaction. EMBO J 10:4081–4088PubMedGoogle Scholar
  24. 24.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedGoogle Scholar
  25. 25.
    Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371PubMedGoogle Scholar
  26. 26.
    Kiran Sree N, Sridhar M, Suresh K, Banat IM, Venkateswar Rao L (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72:43–46Google Scholar
  27. 27.
    Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enazymes. Appl Microbiol Biotechnol 88:381–388PubMedGoogle Scholar
  28. 28.
    Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457PubMedGoogle Scholar
  29. 29.
    Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2011) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol. doi: 10.1016/j.biotec.2011.06.025
  30. 30.
    Matsumoto N, Fukunishi O, Miyanaga M, Kakihara K, Nakajima E, Yoshizumi H (1982) Industrialization of a non-cooking system for alcoholic fermentation from grains. Agric Boil Chem 46:1549–1558Google Scholar
  31. 31.
    Shigechi H, Uyama K, Fujita T, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting α-amylase. J Mol Cat B 17:179–187Google Scholar
  32. 32.
    Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A (2000) Energy saving direct ethanol production from low temperature cooked corn starch using a cell surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J 350:477–484Google Scholar
  33. 33.
    Satoh E, Niimura Y, Uchimura T, Kozaki M, Komagata K (1993) Molecular cloning and expression of two α-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl Environ Microbiol 59:3669–3673PubMedGoogle Scholar
  34. 34.
    Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct ethanol production from raw corn starch via fermentation by use of novel surface engineered yeast strain co-displaying glucoamylase and α-amylase. Appl Environ Microbiol 70:5037–5040PubMedGoogle Scholar
  35. 35.
    Lo HF, Lin LL, Chiang WY, Chie MC, Hsu WH, Chang CT (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178:115–123PubMedGoogle Scholar
  36. 36.
    Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498PubMedGoogle Scholar
  37. 37.
    Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115PubMedGoogle Scholar
  38. 38.
    Yamada R, Bito Y, Adachi T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb Technol 44:344–349Google Scholar
  39. 39.
    Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedGoogle Scholar
  40. 40.
    Thomson JA (1993) Molecular biology of xylan degradation. FEMS Microbiol Rev 10:65–82PubMedGoogle Scholar
  41. 41.
    Dashtban M, Schraft H, Qin H (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595PubMedGoogle Scholar
  42. 42.
    Percival Zhang Y-H, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481PubMedGoogle Scholar
  43. 43.
    Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621–634PubMedGoogle Scholar
  44. 44.
    Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167Google Scholar
  45. 45.
    Woodward J (1991) Synergism in cellulose systems. Bioresour Technol 36:67–75Google Scholar
  46. 46.
    Medve J, Ståhlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44:1064–1073PubMedGoogle Scholar
  47. 47.
    Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110PubMedGoogle Scholar
  48. 48.
    Zhou S, Ingram LO (2001) Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulose. Biotechnol Lett 23:1455–1462Google Scholar
  49. 49.
    Cho KM, Yoo YJ (1999) Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, L2612GC. J Microbiol Biotechnol 9:340–345Google Scholar
  50. 50.
    van Rensburg P, van Zyl WH, Pretorius IS (1996) Co-expression of a Phanerochaete chrysosporium cellobiohydrolase gene and a Butyrivibrio fibrisolvens endo-β-1,4-glucanase gene in Saccharomyces cerevisiae. Curr Genet 30:246–250PubMedGoogle Scholar
  51. 51.
    van Rensburg P, van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76PubMedGoogle Scholar
  52. 52.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793PubMedGoogle Scholar
  53. 53.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedGoogle Scholar
  54. 54.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedGoogle Scholar
  55. 55.
    Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68:53–58PubMedGoogle Scholar
  56. 56.
    Doi RH, Tamaru Y (2001) The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec 1:24–32PubMedGoogle Scholar
  57. 57.
    Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281PubMedGoogle Scholar
  58. 58.
    Desvaux M (2005) The cellulosome of Clostridium cellulolyticum. Enzyme Microb Technol 37:373–385Google Scholar
  59. 59.
    Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741–764PubMedGoogle Scholar
  60. 60.
    Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412PubMedGoogle Scholar
  61. 61.
    Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem 28:249–257Google Scholar
  62. 62.
    Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94Google Scholar
  63. 63.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedGoogle Scholar
  64. 64.
    Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141PubMedGoogle Scholar
  65. 65.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212PubMedGoogle Scholar
  66. 66.
    Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290Google Scholar
  67. 67.
    Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456PubMedGoogle Scholar
  68. 68.
    Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng 27:1–32Google Scholar
  69. 69.
    Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) The β-D-xylosidase of Trichoderma reesei is a multifunctional β-D-xylan xylohydrolase. Biochem J 321:375–381PubMedGoogle Scholar
  70. 70.
    De Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410PubMedGoogle Scholar
  71. 71.
    Törrönen A, Harkki A, Rouvinen J (1994) Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13:2493–2501PubMedGoogle Scholar
  72. 72.
    Kitamoto N, Yoshino S, Ohmiya K, Tsukagoshi N (1999) Sequence analysis, overexpression, and antisense inhibition of a β-xylosidase gene, xylA, from Aspergillus oryzae KBN616. Appl Environ Microbiol 65:20–24PubMedGoogle Scholar
  73. 73.
    La Grange DC, Pretorius IS, van Zyl WH (1996) Expression of a Trichoderma reesei β-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044PubMedGoogle Scholar
  74. 74.
    Li XL, Lijungdahl LG (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Appl Environ Microbiol 62:209–213PubMedGoogle Scholar
  75. 75.
    Moreau A, Durand S, Morosoli R (1992) Secretion of a Cryptococcus albidus xylanase in Saccharomyces cerevisiae. Gene 116:109–113PubMedGoogle Scholar
  76. 76.
    Pérez-Gonzalez JA, De Graff LH, Visser J, Ramón D (1996) Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes. Appl Environ Microbiol 62:2179–2182PubMedGoogle Scholar
  77. 77.
    La Grange DC, Pretorius IS, van Zyl WH (1997) Cloning of the Bacillus pumilus β-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 47:262–266PubMedGoogle Scholar
  78. 78.
    Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttilä M (1996) Cloning of genes encoding α-L-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846PubMedGoogle Scholar
  79. 79.
    La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519PubMedGoogle Scholar
  80. 80.
    Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedGoogle Scholar
  81. 81.
    Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  82. 82.
    Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609PubMedGoogle Scholar
  83. 83.
    Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255PubMedGoogle Scholar
  84. 84.
    Katahira S, Fujita Y, Mizukie A, Fukuda H, Kondo A (2004) Construction of a xylan fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414PubMedGoogle Scholar
  85. 85.
    Den Haan R, van Zyl WH (2001) Differential expression of the Trichoderma reesei β-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 57:521–527Google Scholar
  86. 86.
    Den Haan R, van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33:620–628Google Scholar
  87. 87.
    Morosoli R, Zalce E, Durand S (1993) Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet 24:94–99PubMedGoogle Scholar
  88. 88.
    Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164PubMedGoogle Scholar
  89. 89.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosachharide-assimilating yeast strain. Appl Mircobiol Biotechnol 72:1136–1143Google Scholar
  90. 90.
    Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349Google Scholar
  91. 91.
    van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418PubMedGoogle Scholar
  92. 92.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechamisms of inhibition. Bioresour Technol 74:25–33Google Scholar
  93. 93.
    García-Aparicio MP, Ballesteros I, Gonzárez A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288PubMedGoogle Scholar
  94. 94.
    Martin C, Alriksson B, Sjöde A, Nilvebrant N-O, Jönsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137:339–352PubMedGoogle Scholar
  95. 95.
    Klinke HB, Thomsen AB, Ahring AB (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedGoogle Scholar
  96. 96.
    Almeida JRM, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund M-F (2009) Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 84:751–761PubMedGoogle Scholar
  97. 97.
    Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349PubMedGoogle Scholar
  98. 98.
    Larrson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170Google Scholar
  99. 99.
    Helle SS, Murray A, Lam J, Cameron DR, Duff SJB (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite lilquor. Bioresour Technol 92:163–171PubMedGoogle Scholar
  100. 100.
    Russel JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370Google Scholar
  101. 101.
    Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511PubMedGoogle Scholar
  102. 102.
    Baran R, Reindl W, Northern TR (2009) Mass spectrometry based metabolomics and enzymatic assays for functional genomics. Curr Opin Microbiol 12:547–552PubMedGoogle Scholar
  103. 103.
    Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, Keasling JD (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11:233–239PubMedGoogle Scholar
  104. 104.
    Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T, Yoshimoto H (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796PubMedGoogle Scholar
  105. 105.
    Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:2PubMedGoogle Scholar
  106. 106.
    Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317PubMedGoogle Scholar
  107. 107.
    Jin Y-S, Alper H, Yang Y-T, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering. Appl Environ Microbiol 71:8249–8256PubMedGoogle Scholar
  108. 108.
    Pitkänen J-P, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67:827–837PubMedGoogle Scholar
  109. 109.
    Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70:3681–3686PubMedGoogle Scholar
  110. 110.
    Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746PubMedGoogle Scholar
  111. 111.
    Zhao XQ, Bai FW (2009) Mechanism of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30PubMedGoogle Scholar
  112. 112.
    Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282:233–244PubMedGoogle Scholar
  113. 113.
    Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:1915–1924PubMedGoogle Scholar
  114. 114.
    Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720PubMedGoogle Scholar
  115. 115.
    Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44PubMedGoogle Scholar
  116. 116.
    Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44PubMedGoogle Scholar
  117. 117.
    Hasunuma T, Sung K-M, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:997–1004PubMedGoogle Scholar
  118. 118.
    Okano K, Zhang Q, Kimura S, Narita J, Tanaka T, Fukuda H, Kondo A (2008) System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol 74:1117–1123PubMedGoogle Scholar
  119. 119.
    Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564–572PubMedGoogle Scholar
  120. 120.
    Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009) Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739PubMedGoogle Scholar
  121. 121.
    Tabuchi S, Ito J, Adachi T, Ishida H, Hata Y, Okazaki F, Tanaka T, Ogino C, Kondo A (2010) Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell suface using a chitin-binding module. Appl Microbiol Biotechnol 87:1783–1789PubMedGoogle Scholar
  122. 122.
    Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductase. Appl Environ Microbiol 75:7631–7638PubMedGoogle Scholar
  123. 123.
    Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Tomohisa Hasunuma
    • 1
    • 2
  • Fumio Matsuda
    • 1
  • Akihiko Kondo
    • 3
  1. 1.Organization of Advanced Science and TechnologyKobe UniversityKobeJapan
  2. 2.Precursory Research for Embryonic Science and Technology (PRESTO)Japans Science and Technology Agency (JST)TokyoJapan
  3. 3.Department of Chemical Science and Engineering, Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations