Skip to main content

Gene Site-Specific Insertion in Plants

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

Abstract

Gene site-specific insertion is an important tool to precisely integrate DNA molecules at a defined genomic location. Gene Targeting has many important implications in plant biotechnology such as creation of novel plant traits or the study of gene function. It requires the insertion of an extrachromosomal DNA into the plant cell that will be further integrated at a defined genomic locus through the use of the plant endogenous recombination machinery. Extensive efforts have been made to understand the mechanisms governing gene targeting and for establishing efficient system to achieve precise and efficient targeting. In particular the recent development of engineered nucleases represents an important step forward towards allowing the insertion of a transgene at any given locus in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Google Scholar 

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007a) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    CAS  Google Scholar 

  • Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS (2007b) Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe Interact 20:41–52

    CAS  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    CAS  Google Scholar 

  • Baur M, Potrykus I, Paszkowski J (1990) Intermolecular homologous recombination in plants. Mol Cell Biol 10:492–500

    CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Ser III Sci Vie Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci U S A 96:8774–8778

    CAS  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    CAS  Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709

    CAS  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    CAS  Google Scholar 

  • Charbonnel C, Gallego ME, White CI (2010) Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. Plant J 64:280–290

    CAS  Google Scholar 

  • Charbonnel C, Allain E, Gallego ME, White CI (2011) Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair (Amst) 10(6):611–619

    CAS  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Google Scholar 

  • Crane YM, Gelvin SB (2007) RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc Natl Acad Sci U S A 104:15156–15161

    CAS  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc finger nucleases. Plant Physiol 156(2):466–473

    CAS  Google Scholar 

  • Czako M, An G (1991) Expression of DNA coding for diphtheria toxin chain a is toxic to plant cells. Plant Physiol 95:687–692

    CAS  Google Scholar 

  • D’Halluin K, Vanderstraeten C, Stals E, Cornelissen M, Ruiter R (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102

    Google Scholar 

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium-host interactions. Trends Plant Sci 13:102–105

    CAS  Google Scholar 

  • De Buck S, Podevin N, Nolf J, Jacobs A, Depicker A (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145

    Google Scholar 

  • Deeken R, Engelmann JC, Efetova M, Czirjak T, Muller T, Kaiser WM, Tietz O, Krischke M, Mueller MJ, Palme K, Dandekar T, Hedrich R (2006) An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617–3634

    CAS  Google Scholar 

  • Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12:3365–3371

    CAS  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    CAS  Google Scholar 

  • Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25:457–465

    CAS  Google Scholar 

  • Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations–a review. Gene 82:91–114

    CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    CAS  Google Scholar 

  • Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7:100–105

    CAS  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579–5590

    CAS  Google Scholar 

  • Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Plant Cell Physiol 47:372–379

    CAS  Google Scholar 

  • Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166

    CAS  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–440

    CAS  Google Scholar 

  • Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16:479–485

    CAS  Google Scholar 

  • Gallego ME, Sirand-Pugnet P, White CI (1999) Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Mol Biol 39:83–93

    CAS  Google Scholar 

  • Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–565

    CAS  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    CAS  Google Scholar 

  • Gherbi H, Gallego ME, Jalut N, Lucht JM, Hohn B, White CI (2001) Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep 2:287–291

    CAS  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    CAS  Google Scholar 

  • Halfter U, Morris PC, Willmitzer L (1992) Gene targeting in Arabidopsis thaliana. Mol Gen Genet 231:186–193

    CAS  Google Scholar 

  • Hanin M, Mengiste T, Bogucki A, Paszkowski J (2000) Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J 24:183–189

    CAS  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    CAS  Google Scholar 

  • Hohe A, Egener T, Lucht JM, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    CAS  Google Scholar 

  • Hohn B, Puchta H (1999) Gene therapy in plants. Proc Natl Acad Sci U S A 96:8321–8323

    CAS  Google Scholar 

  • Hoshaw JP, Unger-Wallace E, Zhang F, Voytas DF (2010) A transient assay for monitoring zinc finger nuclease activity at endogenous plant gene targets. Methods Mol Biol 649:299–313

    CAS  Google Scholar 

  • Houba-Hérin N, Reynolds S, Schaefer D, von Schwartzenberg K, Laloue M (1997) Molecular characterisation of homologous recombination events in the moss Physcomitrella patens. In: Petch JC, Latché A, Bouzayen M (eds) Plant Sciences, 3e Colloque général de la Société Française de Physiologie Végétale. SFPV-INRA, Toulouse, pp 22–23

    Google Scholar 

  • Hrouda M, Paszkowski J (1994) High fidelity extrachromosomal recombination and gene targeting in plants. Mol Gen Genet 243:106–111

    CAS  Google Scholar 

  • Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219

    CAS  Google Scholar 

  • Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394

    CAS  Google Scholar 

  • Johzuka-Hisatomi Y, Terada R, Iida S (2008) Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 36:4727–4735

    CAS  Google Scholar 

  • Kempin SA, Liljegren SJ, Block LM, Rounsley SD, Yanofsky MF, Lam E (1997) Targeted disruption in Arabidopsis. Nature 389:802–803

    CAS  Google Scholar 

  • Kim SI, Veena HJ, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–91

    CAS  Google Scholar 

  • Kim JS, Lee HJ, Carroll D (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat Methods 7:91, author reply 91–2

    CAS  Google Scholar 

  • Kipp PB, Van Eck JM, Beetham PR, May GD (2000) Gene targeting in plants via site-directed mutagenesis. Methods Mol Biol 133:213–221

    CAS  Google Scholar 

  • Klutstein M, Shaked H, Sherman A, Avivi-Ragolsky N, Shema E, Zenvirth D, Levy AA, Simchen G (2008) Functional conservation of the yeast and Arabidopsis RAD54-like genes. Genetics 178:2389–2397

    CAS  Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol 132:174–184

    CAS  Google Scholar 

  • Kumar S, Thompson WF (2009) Plant genome engineering using zinc finger nucleases. In: Jain SM, Brar DS (eds) Molecular Techniques in Crop Improvement. Springer, New York, pp 579–590

    Google Scholar 

  • Lacroix B, Li J, Tzfira T, Citovsky V (2006) Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can J Physiol Pharmacol 84:333–345

    CAS  Google Scholar 

  • Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2:415–425

    CAS  Google Scholar 

  • Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Muller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    CAS  Google Scholar 

  • Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F (2004) A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. Plant J 40:1007–1015

    CAS  Google Scholar 

  • Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005a) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102:5733–5738

    CAS  Google Scholar 

  • Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005b) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci U S A 102:19231–19236

    CAS  Google Scholar 

  • Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    CAS  Google Scholar 

  • Lieberman-Lazarovich M, Levy AA (2011) Homologous recombination in plants: an antireview. Methods Mol Biol 701:51–65

    CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237

    CAS  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    CAS  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    CAS  Google Scholar 

  • Magori S, Citovsky V (2011) Epigenetic control of Agrobacterium T-DNA integration. Biochim Biophys Acta 1809(8):388–394

    CAS  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108:2623–2628

    CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    CAS  Google Scholar 

  • Mengiste T, Paszkowski J (1999) Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 380:749–758

    CAS  Google Scholar 

  • Miao ZH, Lam E (1995) Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J 7:359–365

    CAS  Google Scholar 

  • Molinier J, Ramos C, Fritsch O, Hohn B (2004) CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16:1633–1643

    CAS  Google Scholar 

  • Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107:21617–21622

    CAS  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci U S A 97:948–953

    CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438

    CAS  Google Scholar 

  • Nilsson O, Wu E, Wolfe DS, Weigel D (1998) Genetic ablation of flowers in transgenic Arabidopsis. Plant J 15:799–804

    CAS  Google Scholar 

  • Offringa R, de Groot MJ, Haagsman HJ, Does MP, van den Elzen PJ, Hooykaas PJ (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9:3077–3084

    CAS  Google Scholar 

  • Offringa R, Franke-van Dijk ME, De Groot MJ, van den Elzen PJ, Hooykaas PJ (1993) Nonreciprocal homologous recombination between Agrobacterium transferred DNA and a plant chromosomal locus. Proc Natl Acad Sci U S A 90:7346–7350

    CAS  Google Scholar 

  • Oh TJ, May GD (2001) Oligonucleotide-directed plant gene targeting. Curr Opin Biotechnol 12:169–172

    CAS  Google Scholar 

  • Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22:509–512

    CAS  Google Scholar 

  • Opperman R, Emmanuel E, Levy AA (2004) The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 168:2207–2215

    CAS  Google Scholar 

  • Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35:604–612

    CAS  Google Scholar 

  • Osakabe K, Abe K, Yoshioka T, Osakabe Y, Todoriki S, Ichikawa H, Hohn B, Toki S (2006) Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. Plant J 48:827–842

    CAS  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    CAS  Google Scholar 

  • Pappenheimer AM Jr (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021–4026

    CAS  Google Scholar 

  • Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032

    CAS  Google Scholar 

  • Plessis A, Perrin A, Haber JE, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460

    CAS  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Google Scholar 

  • Puchta H, Hohn B (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res 19:2693–2700

    CAS  Google Scholar 

  • Puchta H, Hohn B (2005) Green light for gene targeting in plants. Proc Natl Acad Sci U S A 102:11961–11962

    CAS  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040

    CAS  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93:5055–5060

    CAS  Google Scholar 

  • Reiss B, Klemm M, Kosak H, Schell J (1996) RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci U S A 93:3094–3098

    CAS  Google Scholar 

  • Reiss B, Schubert I, Kopchen K, Wendeler E, Schell J, Puchta H (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc Natl Acad Sci U S A 97:3358–3363

    CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    CAS  Google Scholar 

  • Rice MC, May GD, Kipp PB, Parekh H, Kmiec EB (2000) Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiol 123:427–438

    CAS  Google Scholar 

  • Risseeuw E, Offringa R, Franke-van Dijk ME, Hooykaas PJ (1995) Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J 7:109–119

    CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    CAS  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    CAS  Google Scholar 

  • Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156(3):1269–1277

    CAS  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    CAS  Google Scholar 

  • Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    CAS  Google Scholar 

  • Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    CAS  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    CAS  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    CAS  Google Scholar 

  • Schaefer DG, Zryd JP (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127:1430–1438

    CAS  Google Scholar 

  • Schaefer DG, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    CAS  Google Scholar 

  • Schaefer DG, Delacote F, Charlot F, Vrielynck N, Guyon-Debast A, Le Guin S, Neuhaus JM, Doutriaux MP, Nogue F (2010) RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair (Amst) 9:526–533

    CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    CAS  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102:12265–12269

    CAS  Google Scholar 

  • Shaked H, Avivi-Ragolsky N, Levy AA (2006) Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 173:985–994

    CAS  Google Scholar 

  • Shalev G, Sitrit Y, Avivi-Ragolski N, Lichtenstein C, Levy AA (1999) Stimulation of homologous recombination in plants by expression of the bacterial resolvase ruvC. Proc Natl Acad Sci U S A 96:7398–7402

    CAS  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  Google Scholar 

  • Takeda S, Tadele Z, Hofmann I, Probst AV, Angelis KJ, Kaya H, Araki T, Mengiste T, Mittelsten Scheid O, Shibahara K, Scheel D, Paszkowski J (2004) BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev 18:782–793

    CAS  Google Scholar 

  • Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an ArabidopsisAtLIG4 mutant. Biochem Biophys Res Commun 396:289–293

    CAS  Google Scholar 

  • Tenea GN, Spantzel J, Lee LY, Zhu Y, Lin K, Johnson SJ, Gelvin SB (2009) Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21:3350–3367

    CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    CAS  Google Scholar 

  • Terada R, Asao H, Iida S (2004) A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22:653–659

    CAS  Google Scholar 

  • Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB (1991) A Brassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Dev Biol 143:173–184

    CAS  Google Scholar 

  • Thykjaer T, Finnemann J, Schauser L, Christensen L, Poulsen C, Stougaard J (1997) Gene targeting approaches using positive-negative selection and large flanking regions. Plant Mol Biol 35:523–530

    CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JD (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  Google Scholar 

  • Trouiller B, Schaefer DG, Charlot F, Nogue F (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Res 34:232–242

    CAS  Google Scholar 

  • Trouiller B, Charlot F, Choinard S, Schaefer DG, Nogue F (2007) Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation. Biotechnol Lett 29:1591–1598

    CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    CAS  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23:567–569

    CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  Google Scholar 

  • van Attikum H, Hooykaas PJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31:826–832

    Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6550–6558

    Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31:4247–4255

    Google Scholar 

  • Watt VM, Ingles CJ, Urdea MS, Rutter WJ (1985) Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A 82:4768–4772

    CAS  Google Scholar 

  • Wehrkamp-Richter S, Degroote F, Laffaire JB, Paul W, Perez P, Picard G (2009) Characterisation of a new reporter system allowing high throughput in planta screening for recombination events before and after controlled DNA double strand break induction. Plant Physiol Biochem 47:248–255

    CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15:308–321

    CAS  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    CAS  Google Scholar 

  • Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652

    Google Scholar 

  • Xiaohui Wang H (2001) Positive-Negative selection for homologous recombination in Arabidopsis. Gene 272:249–255

    CAS  Google Scholar 

  • Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386–396

    CAS  Google Scholar 

  • Yi H, Sardesai N, Fujinuma T, Chan CW, Veena HJ, Gelvin SB (2006) Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18:1575–89

    CAS  Google Scholar 

  • Yin H, Zhang X, Liu J, Wang Y, He J, Yang T, Hong X, Yang Q, Gong Z (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. Plant Cell 21:386–402

    CAS  Google Scholar 

  • Zhang F, Voytas DF (2011) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167–177

    CAS  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    CAS  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Google Scholar 

  • Zheng Y, He XW, Ying YH, Lu JF, Gelvin SB, Shou HX (2009) Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Mol Plant 2:832–837

    CAS  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 96:8768–8773

    CAS  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena HJ, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    CAS  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20:6317–6322

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the recombination group for fruitful discussions and critical reading of the manuscript and apologise to all colleagues whose valuable work was only cited through review. Work in our laboratory is supported by a European Union research grant (FP7 KBBE-2008-227190, RECBREED), the Centre National de la Recherche Scientifique, the Université Blaise Pascal, the Université d’ Auvergne and the Institut National de la Santé et de la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles I. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Da Ines, O., White, C.I. (2013). Gene Site-Specific Insertion in Plants. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_11

Download citation

Publish with us

Policies and ethics