Advertisement

Pediatric High-Grade Glioma: Role of Microsatellite Instability

  • Marta Viana-Pereira
  • Chris Jones
  • Rui Manuel Reis
Chapter
Part of the Pediatric Cancer book series (PECA, volume 3)

Abstract

Microsatellite instability (MSI) frequency in pediatric high-grade glioma remains a controversial research topic, and there is lack of clarity in the literature. Overall, it has been shown that MSI-positivity in adult high-grade glioma is a rare event, whereas in pediatric tumors reported frequencies are highly variable, probably due to the lack of consistency in the screening strategies. Furthermore, in contrast to colorectal MSI-positive tumors that harbor Type B MSI, high-grade gliomas have been reported as presenting Type A MSI, increasing the difficulty of an accurate analysis. In this chapter, we will review the type of MSI mostly found in pediatric high-grade gliomas and the distinct approaches to detect it, the role of the mismatch repair system (MMR) in these tumors, as well as the relation of MSI with other genomic abnormalities and the frequency of MSI target genes mutations.

Keywords

Familial Adenomatous Polyposis Lynch Syndrome International Human Genome Sequencing Consortium Turcot Syndrome Pediatric Glioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso M, Hamelin R, Kim M, Porwancher K, Sung T, Parhar P, Miller DC, Newcomb EW (2001) Microsatellite instability occurs in distinct subtypes of pediatric but not adult central nervous system tumors. Cancer Res 61:2124–2128PubMedGoogle Scholar
  2. Amariglio N, Friedman E, Mor O, Stiebel H, Phelan C, Collins P, Nordenskjold M, Brok-Simoni F, Rechavi G (1995) Analysis of microsatellite repeats in pediatric brain tumors. Cancer Genet Cytogenet 84:56–59PubMedCrossRefGoogle Scholar
  3. Arana ME, Kunkel TA (2010) Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 20:304–311PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, Grigoriadis AE, Ashworth A, Reis RM, Ellison DW, Al-Sarraj S, Hargrave D, Jones C (2010) A distinct spectrum of copy number aberrations in pediatric high grade gliomas. Clin Cancer Res 16:3368–3377PubMedCentralPubMedCrossRefGoogle Scholar
  5. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087. e3. ReviewGoogle Scholar
  6. Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, Flejou JF, Duval A, Hamelin R (2006) Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol 24:241–251PubMedCrossRefGoogle Scholar
  7. Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, Zheng J, Poon WS (1999) Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30:1284–1290PubMedCrossRefGoogle Scholar
  8. Dams E, Van de Kelft EJ, Martin JJ, Verlooy J, Willems PJ (1995) Instability of microsatellites in human gliomas. Cancer Res 55:1547–1549PubMedGoogle Scholar
  9. Eckert A, Kloor M, Giersch A, Ahmadi R, Herold-Mende C, Hampl JA, Heppner FL, Zoubaa S, Holinski-Feder E, Pietsch T, Wiestler OD, von Knebel Doeberitz M, Roth W, Gebert J (2007) Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol 17:146–150PubMedCrossRefGoogle Scholar
  10. Giunti L, Cetica V, Ricci U, Giglio S, Sardi I, Paglierani M, Andreucci E, Sanzo M, Forni M, Buccoliero AM, Genitori L, Genuardi M (2009) Type A microsatellite instability in pediatric gliomas as an indicator of Turcot syndrome. Eur J Hum Genet 17:919–927PubMedCrossRefGoogle Scholar
  11. Goel A, Nagasaka T, Hamelin R, Boland CR (2010) An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS One 5:e9393PubMedCentralPubMedCrossRefGoogle Scholar
  12. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  13. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedCrossRefGoogle Scholar
  14. Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T (1997) Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 112:251–256PubMedCrossRefGoogle Scholar
  15. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346PubMedCrossRefGoogle Scholar
  16. Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR, Carter NP, Tomlinson IP (2005) Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 24:118–129PubMedCrossRefGoogle Scholar
  17. Kanamori M, Kon H, Nobukuni T, Nomura S, Sugano K, Mashiyama S, Kumabe T, Yoshimoto T, Meuth M, Sekiya T, Murakami Y (2000) Microsatellite instability and the PTEN1 gene mutation in a subset of early onset gliomas carrying germline mutation or promoter methylation of the hMLH1 gene. Oncogene 19:1564–1571PubMedCrossRefGoogle Scholar
  18. Leung SY, Chan TL, Chung LP, Chan AS, Fan YW, Hung KN, Kwong WK, Ho JW, Yuen ST (1998) Microsatellite instability and mutation of DNA mismatch repair genes in gliomas. Am J Pathol 153:1181–1188PubMedCrossRefGoogle Scholar
  19. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumours of the central nervous system. IARC, LyonGoogle Scholar
  20. Martinez R, Schackert HK, Appelt H, Plaschke J, Baretton G, Schackert G (2005) Low-level microsatellite instability phenotype in sporadic glioblastoma multiforme. J Cancer Res Clin Oncol 131:87–93PubMedCrossRefGoogle Scholar
  21. Nigg EA (2005) Genome instability in cancer development. Springer, New YorkGoogle Scholar
  22. Oda S, Maehara Y, Ikeda Y, Oki E, Egashira A, Okamura Y, Takahashi I, Kakeji Y, Sumiyoshi Y, Miyashita K, Yamada Y, Zhao Y, Hattori H, Taguchi K, Ikeuchi T, Tsuzuki T, Sekiguchi M, Karran P, Yoshida MA (2005) Two modes of microsatellite instability in human cancer: differential connection of defective DNA mismatch repair to dinucleotide repeat instability. Nucleic Acids Res 33:1628–1636PubMedCentralPubMedCrossRefGoogle Scholar
  23. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Nikiforov YE, Lyons-Weiler MA, LaFramboise WA, Burger PC, Brat DJ, Rosenblum MK, Gilles FH, Yates AJ, Zhou T, Cohen KJ, Finlay JL, Jakacki RI, Children’s Oncology Group (2010) Mismatch repair deficiency is an uncommon mechanism of alkylator resistance in pediatric malignant gliomas: a report from the Children’s Oncology Group. Pediatr Blood Cancer 55:1066–1071PubMedCentralPubMedCrossRefGoogle Scholar
  24. Roy S, Raskin L, Raymond VA, Thibodeau SN, Mody RJ, Gruber SB (2009) Pediatric duodenal cancer and biallelic mismatch repair gene mutations. Pediatr Blood Cancer 53:116–120PubMedCrossRefGoogle Scholar
  25. Sobrido MJ, Pereira CR, Barros F, Forteza J, Carracedo A, Lema M (2000) Low frequency of replication errors in primary nervous system tumours. J Neurol Neurosurg Psychiatry 69:369–375PubMedCrossRefGoogle Scholar
  26. The Cancer Genome Atlas Research Network [TCGA] (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  27. Toledano H, Goldberg Y, Kedar-Barnes I, Baris H, Porat RM, Shochat C, Bercovich D, Pikarsky E, Lerer I, Yaniv I, Abeliovich D, Peretz T (2009) Homozygosity of MSH2 c.1906 G-- > C germline mutation is associated with childhood colon cancer, astrocytoma and signs of Neurofibromatosis type I. Fam Cancer 8:187–194PubMedCrossRefGoogle Scholar
  28. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268PubMedCentralPubMedCrossRefGoogle Scholar
  29. Viana-Pereira M, Lee A, Popov S, Bax DA, Al-Sarraj S, Bridges LR, Stávale JN, Hargrave D, Jones C, Reis RM (2011) Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation. PLoS One 6:e20588PubMedCentralPubMedCrossRefGoogle Scholar
  30. Vladimirova V, Denkhaus D, Soerensen N, Wagner S, Wolff JE, Pietsch T (2007) Low level of microsatellite instability in paediatric malignant astrocytomas. Neuropathol Appl Neurobiol 34:547–554PubMedCrossRefGoogle Scholar
  31. Wimmer K, Etzler J (2008) Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet 124:105–122PubMedCrossRefGoogle Scholar
  32. Woerner SM, Kloor M, von Knebel Doeberitz M, Gebert JF (2006) Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomark 2:69–86PubMedGoogle Scholar
  33. Wong YF, Cheung TH, Lo KW, Yim SF, Chan LK, Buhard O, Duval A, Chung TK, Hamelin R (2006) Detection of microsatellite instability in endometrial cancer: advantages of a panel of five mononucleotide repeats over the National Cancer Institute panel of markers. Carcinogenesis 27:951–955PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Marta Viana-Pereira
    • 1
  • Chris Jones
    • 2
  • Rui Manuel Reis
    • 3
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.Section of Paediatric OncologyInstitute of Cancer ResearchSutton, SurreyUK
  3. 3.Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil

Personalised recommendations