Advertisement

Histone Acetylation as a Therapeutic Target

  • B. Ruthrotha Selvi
  • Snehajyoti Chatterjee
  • Rahul Modak
  • M. Eswaramoorthy
  • Tapas K. Kundu
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 61)

Abstract

The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.

Keywords

Esophageal Squamous Cell Carcinoma Histone Acetylation Solid Lipid Nanoparticles Receptor Mediate Endocytosis PLGA Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Work in our laboratory is supported by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Department of Biotechnology, Government of India (Grant Nos. Grant/DBT/CSH/GIA/1752/2011-2012 and Chromatin and Disease: Programme Support Grant No. Grant/DBT/CSH/GIA/1957/2011-2012), Department of Science and Technology (DST) Government of India, Dabur Research Foundation and National Agricultural Innovative Project (NAIP), Indian Council of Agricultural Research, Govt. of India under component 4: Basic and Strategic Research (Grant No. NAIP/Comp-4/C-30017/2008-09). TKK is a recipient of Sir JC Bose national fellowship (DST, Government of India).

References

  1. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300 and CARM1 in transcriptional activation by p53. Cell 117:735–748PubMedGoogle Scholar
  2. Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D, Kundu TK (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52:267–277PubMedGoogle Scholar
  3. Arif M, Vedamurthy BM, Choudhari R, Ostwal YB, Mantelingu K, Kodaganur GS, Kundu TK (2010) Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem Biol 17:903–913PubMedGoogle Scholar
  4. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140PubMedGoogle Scholar
  5. Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726PubMedGoogle Scholar
  6. Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62:6231–6239PubMedGoogle Scholar
  7. Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara K, Nakayama T (2006) Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345:1547–1557PubMedGoogle Scholar
  8. Barman HK, Takami Y, Nishijima H, Shibahara K, Sanematsu F, Nakayama T (2008) Histone acetyltransferase-1 regulates integrity of cytosolic histone H3-H4 containing complex. Biochem Biophys Res Commun 373:624–630PubMedGoogle Scholar
  9. Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, Lynch G, Greene RW, Wood MA (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556PubMedGoogle Scholar
  10. Bártová E, Galiová G, Krejcí J, Harnicarová A, Strasák L, Kozubek S (2008) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702PubMedGoogle Scholar
  11. Battu A, Ray A, Wani AA (2011) ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation. Nucleic Acids Res 39:7931–7945PubMedGoogle Scholar
  12. Biel M, Kretsovali A, Karatzali E, Papamatheakis J, Giannis A (2004) Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angew Chem Int Ed Engl 43:3974–3976PubMedGoogle Scholar
  13. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398PubMedGoogle Scholar
  14. Blackwell JSJ, Wilkinson ST, Mosammaparast N, Pemberton LF (2007) Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. J Biol Chem 282:20142–20150PubMedGoogle Scholar
  15. Borrow J, Stanton VP, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dubé I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41PubMedGoogle Scholar
  16. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17:471–482PubMedGoogle Scholar
  17. Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE, Robson CN (1999) Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 274:17599–17604PubMedGoogle Scholar
  18. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P, Initiative ENR (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251PubMedGoogle Scholar
  19. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedGoogle Scholar
  20. Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133PubMedGoogle Scholar
  21. Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R (2010) Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 205:97–106PubMedGoogle Scholar
  22. Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 24:3070–3081PubMedGoogle Scholar
  23. Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36:469–480PubMedGoogle Scholar
  24. Chang J, Jallouli Y, Barras A, Dupont N, Betbeder D (2009) Chapter 1 – Drug delivery to the brain using colloidal carriers. Prog Brain Res 180:2–17PubMedGoogle Scholar
  25. Charvet C, Wissler M, Brauns-Schubert P, Wang SJ, Tang Y, Sigloch FC, Mellert H, Brandenburg M, Lindner SE, Breit B, Green DR, McMahon SB, Borner C, Gu W, Maurer U (2011) Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 42:584–596PubMedGoogle Scholar
  26. Chatterjee S, Gadad SS, Kundu TK (2010) Atomic force microscopy: a tool to unveil the mystery of biological systems. Resonance 15:622–642Google Scholar
  27. Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298:E127–E137PubMedGoogle Scholar
  28. Chiani F, Di Felice F, Camilloni G (2006) SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res 34:5426–5437PubMedGoogle Scholar
  29. Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69:583–592PubMedGoogle Scholar
  30. Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 25:4272–4282PubMedGoogle Scholar
  31. Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, Yoshida M, Benkirane M, Trouche D, Khochbin S (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J 24:2634–2645PubMedGoogle Scholar
  32. Cole PA (2008) Chemical probes for histone-modifying enzymes. Nat Chem Biol 4:590–597Google Scholar
  33. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 108:84–96PubMedGoogle Scholar
  34. Creaven M, Hans F, Mutskov V, Col E, Caron C, Dimitrov S, Khochbin S (1999) Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38:8826–8830PubMedGoogle Scholar
  35. Cui L, Miao J (2010) Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell 9:1138–1149PubMedGoogle Scholar
  36. Cui L, Miao J, Furuya T, Li X, Su XZ (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:1219–1227PubMedGoogle Scholar
  37. Cui L, Miao J, Furuya T, Fan Q, Li X, Rathod PK, Su XZ (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryot Cell 7:1200–1210PubMedGoogle Scholar
  38. Dai YS, Markham BE (2001) p300 functions as a coactivator of transcription factor GATA-4. J Biol Chem 276:37178–37185PubMedGoogle Scholar
  39. Dal Piaz F, Tosco A, Eletto D, Piccinelli AL, Moltedo O, Franceschelli S, Sbardella G, Remondelli P, Ratrelli L, Vesci L, Pisano C, De Tommasi N (2010) The identification of a novel natural activator of p300 histone acetyltransferase provides new insights into the modulation mechanism of this enzyme. Chembiochem 11:818–827PubMedGoogle Scholar
  40. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117PubMedGoogle Scholar
  41. Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277:278–295PubMedGoogle Scholar
  42. Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, Montminy M (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369PubMedGoogle Scholar
  43. Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W, Lane WS, Tan S, Yang XJ, Côté J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64PubMedGoogle Scholar
  44. Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652PubMedGoogle Scholar
  45. Duffy KR, Pardridge WM (1987) Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 420:32–38PubMedGoogle Scholar
  46. Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184PubMedGoogle Scholar
  47. English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508PubMedGoogle Scholar
  48. Eymin B, Claverie P, Salon C, Leduc C, Col E, Brambilla E, Khochbin S, Gazzeri S (2006) p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26:4339–4350PubMedGoogle Scholar
  49. Falbo KB, Shen X (2006) Chromatin remodeling in DNA replication. J Cell Biochem 97:684–689PubMedGoogle Scholar
  50. Fan Q, An L, Cui L (2004) Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot Cell 3:264–276PubMedGoogle Scholar
  51. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122PubMedGoogle Scholar
  52. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400PubMedGoogle Scholar
  53. Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139PubMedGoogle Scholar
  54. Fukuda H, Sano N, Muto S, Horikoshi M (2006) Simple histone acetylation plays a complex role in the regulation of gene expression. Biref Funct Genomic Proteomic 5:190–208Google Scholar
  55. Fussner E, Ahmed K, Dehghani H, Strauss M, Bazett-Jones DP (2010) Changes in chromatin fiber density as a marker for pluripotency. Cold Spring Harb Symp Quant Biol 75:245–249PubMedGoogle Scholar
  56. Gadad SS, Rajan RE, Senapati P, Chatterjee S, Shandilya J, Dash PK, Ranga U, Kundu TK (2011) HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 410:997–1007PubMedGoogle Scholar
  57. Gaughan L, Brady ME, Cook S, Neal DE, Robson CN (2001) Tip60 is a co-activator specific for class I nuclear hormone receptors. J Biol Chem 276:46841–46848PubMedGoogle Scholar
  58. Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277:25904–25913PubMedGoogle Scholar
  59. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24:300–303PubMedGoogle Scholar
  60. Ge Z, Wang H, Parthun MR (2011) Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 286:16790–16799PubMedGoogle Scholar
  61. Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J (2010) Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74:157–163PubMedGoogle Scholar
  62. Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18:5826–5834PubMedGoogle Scholar
  63. Goodarzi AA, Kurka T, Jeggo PA (2011) KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18:831–839PubMedGoogle Scholar
  64. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577PubMedGoogle Scholar
  65. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448:1063–1067PubMedGoogle Scholar
  66. Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G (2007a) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931PubMedGoogle Scholar
  67. Groth A, Rocha W, Verreault A, Almouzni G (2007b) Chromatin challenges during DNA replication and repair. Cell 128:721–733PubMedGoogle Scholar
  68. Guo B, Panagiotaki N, Warwood S, Sharrocks AD (2011) Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 39:6403–6413PubMedGoogle Scholar
  69. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305PubMedGoogle Scholar
  70. Gusterson R, Brar B, Faulkes D, Giordano A, Chrivia J, Latchman D (2002) The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem 277:2517–2524PubMedGoogle Scholar
  71. Han J, Zhou H, Horazdovsky B, Zhang K, Xu RM, Zhang Z (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315:653–655PubMedGoogle Scholar
  72. Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases–an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497PubMedGoogle Scholar
  73. Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66:8116–8122PubMedGoogle Scholar
  74. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473PubMedGoogle Scholar
  75. Jain KK (2011) Nanobiotechnology and personalized medicine. Prog Mol Biol Transl Sci 104:325–354PubMedGoogle Scholar
  76. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155PubMedGoogle Scholar
  77. Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330PubMedGoogle Scholar
  78. Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S (2006) Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 55:3104–3111PubMedGoogle Scholar
  79. Kaur A, Jain S, Tiwary AK (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 58:61–74PubMedGoogle Scholar
  80. Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118PubMedGoogle Scholar
  81. Kindle KB, Troke PJ, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S, Heery DM (2005) MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 25:988–1002PubMedGoogle Scholar
  82. Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M (2001) Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia 15:89–94PubMedGoogle Scholar
  83. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174PubMedGoogle Scholar
  84. Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA 108:12325–12330PubMedGoogle Scholar
  85. Lake AN, Bedford MT (2007) Protein methylation and DNA repair. Mutat Res 618:91–101PubMedGoogle Scholar
  86. Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5:589–595PubMedGoogle Scholar
  87. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685PubMedGoogle Scholar
  88. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438PubMedGoogle Scholar
  89. Li M, Luo RZ, Chen JW, Cao Y, Lu JB, He JH, Wu QL, Cai MY (2011a) High expression of transcriptional coactivator p300 correlates with aggressive features and poor prognosis of hepatocellular carcinoma. J Transl Med 9:5PubMedGoogle Scholar
  90. Li Y, Yang HX, Luo RZ, Zhang Y, Li M, Wang X, Jia WH (2011b) High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg 91:1531–1538PubMedGoogle Scholar
  91. LLeonart ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, López-Vicente L, Kondoh H, Blanco C, Carnero A, Ramón y Cajal S (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16:603–608PubMedGoogle Scholar
  92. Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926PubMedGoogle Scholar
  93. Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, Russell R, DePinho RA, Lenz J, van Lohuizen M (2002) Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32:160–165PubMedGoogle Scholar
  94. Malam Y, Lim EJ, Seifalian AM (2011) Current trends in the application of nanoparticles in drug delivery. Curr Med Chem 18:1067–1078PubMedGoogle Scholar
  95. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252PubMedGoogle Scholar
  96. Mantelingu K, Kishore AH, Balasubramanyam K, Kumar GV, Altaf M, Swamy SN, Selvi R, Das C, Narayana C, Rangappa KS, Kundu TK (2007a) Activation of p300 histone acetyltransferase by small molecules altering enzyme structure probed by surface enhanced Raman spectroscopy. J Phys Chem B 111:4527–4534PubMedGoogle Scholar
  97. Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK (2007b) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14:645–657PubMedGoogle Scholar
  98. Martin DG, Grimes DE, Baetz K, Howe L (2006) Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol Cell Biol 26:3018–3028PubMedGoogle Scholar
  99. Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95:13519–13524PubMedGoogle Scholar
  100. Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542PubMedGoogle Scholar
  101. Miao J, Fan Q, Cui L, Li J (2006) The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369:53–65PubMedGoogle Scholar
  102. Miao J, Fan Q, Cui L, Li X, Wang H, Ning G, Reese JC (2010) The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol Microbiol 78:883–902PubMedGoogle Scholar
  103. Mitrakou A, Mokan M, Bolli G, Veneman T, Jenssen T, Cryer P, Gerich J (1992) Evidence against the hypothesis that hyperinsulinemia increases sympathetic nervous system activity in man. Metabolism 41:198–200PubMedGoogle Scholar
  104. Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, Quade BJ (2004) Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 64:5570–5577PubMedGoogle Scholar
  105. Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12:1565–1569PubMedGoogle Scholar
  106. Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357PubMedGoogle Scholar
  107. Ott DE, Chertova EN, Busch LK, Coren LV, Gagliardi TD, Johnson DG (1999) Mutational analysis of the hydrophobic tail of the human immunodeficiency virus type 1 p6(Gag) protein produces a mutant that fails to package its envelope protein. J Virol 73:19–28PubMedGoogle Scholar
  108. Panagopoulos I, Fioretos T, Isaksson M, Mitelman F, Johansson B, Theorin N, Juliusson G (2002) RT-PCR analysis of acute myeloid leukemia with t(8;16)(p11;p13): identification of a novel MOZ/CBP transcript and absence of CBP/MOZ expression. Genes Chromosomes Cancer 35:372–374PubMedGoogle Scholar
  109. Panicker SP, Raychaudhuri B, Sharma P, Tipps R, Mazumdar T, Mal AK, Palomo JM, Vogelbaum MA, Haque SJ (2010) p300- and Myc-mediated regulation of glioblastoma multiforme cell differentiation. Oncotarget 1:289–303PubMedGoogle Scholar
  110. Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94PubMedGoogle Scholar
  111. Perriello G, Pampanelli S, Del Sindaco P, Lalli C, Ciofetta M, Volpi E, Santeusanio F, Brunetti P, Bolli GB (1997) Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes 46:1010–1016PubMedGoogle Scholar
  112. Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, Cowman AF, Brown GV, Duffy MF (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog 7:e1001292PubMedGoogle Scholar
  113. Phan HM, Xu AW, Coco C, Srajer G, Wyszomierski S, Evrard YA, Eckner R, Dent SY (2005) GCN5 and p300 share essential functions during early embryogenesis. Dev Dyn 233:1337–1347PubMedGoogle Scholar
  114. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555PubMedGoogle Scholar
  115. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22:8353–8365PubMedGoogle Scholar
  116. Ravindra KC, Selvi BR, Arif M, Reddy BA, Thanuja GR, Agrawal S, Pradhan SK, Nagashayana N, Dasgupta D, Kundu TK (2009) Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J Biol Chem 284:24453–24464PubMedGoogle Scholar
  117. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017PubMedGoogle Scholar
  118. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007PubMedGoogle Scholar
  119. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22:6537–6549PubMedGoogle Scholar
  120. Rozman M, Camós M, Colomer D, Villamor N, Esteve J, Costa D, Carrió A, Aymerich M, Aguilar JL, Domingo A, Solé F, Gomis F, Florensa L, Montserrat E, Campo E (2004) Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer 40:140–145PubMedGoogle Scholar
  121. Santer FR, Höschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10:1644–1655PubMedGoogle Scholar
  122. Sapountzi V, Côté J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 68:1147–1156PubMedGoogle Scholar
  123. Segré CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848PubMedGoogle Scholar
  124. Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8:3182–3188PubMedGoogle Scholar
  125. Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK (2009) Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol 29:5115–5127PubMedGoogle Scholar
  126. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99PubMedGoogle Scholar
  127. Shia WJ, Pattenden SG, Workman JL (2006) Histone H4 lysine 16 acetylation breaks the genome’s silence. Genome Biol 7:217PubMedGoogle Scholar
  128. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Yokomizo A, Naito S, Kohno K (2008) Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68:98–105PubMedGoogle Scholar
  129. Shiota M, Yokomizo A, Tada Y, Uchiumi T, Inokuchi J, Tatsugami K, Kuroiwa K, Yamamoto K, Seki N, Naito S (2010) P300/CBP-associated factor regulates Y-box binding protein-1 expression and promotes cancer cell growth, cancer invasion and drug resistance. Cancer Sci 101:1797–1806PubMedGoogle Scholar
  130. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63:2373–2378PubMedGoogle Scholar
  131. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847PubMedGoogle Scholar
  132. Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 40:689–701PubMedGoogle Scholar
  133. Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25:9175–9188PubMedGoogle Scholar
  134. Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4:1521–1532PubMedGoogle Scholar
  135. Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A (2007) Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 5:38PubMedGoogle Scholar
  136. Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166PubMedGoogle Scholar
  137. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217PubMedGoogle Scholar
  138. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839PubMedGoogle Scholar
  139. Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C, Di Fenza A, Tozzini V, Allouch A, Albanese A, Giacca M, Cereseto A (2010) GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 7:18PubMedGoogle Scholar
  140. Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28:1878–1889PubMedGoogle Scholar
  141. Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, Duffy MF, Silva LM, Scherf A, Ivens A, Speed TP, Beeson JG, Cowman AF (2009) Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 7:e84PubMedGoogle Scholar
  142. Troke PJ, Kindle KB, Collins HM, Heery DM (2006) MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 73:23–39PubMedGoogle Scholar
  143. Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J, Lin Q, Zhao J (2011) Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 3:121–132PubMedGoogle Scholar
  144. van Attikum H, Gasser SM (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217PubMedGoogle Scholar
  145. Vempati RK (2012) DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells. Mol Biol Rep 39(1):303–308PubMedGoogle Scholar
  146. Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 285:28553–28564PubMedGoogle Scholar
  147. Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31:1050–1061PubMedGoogle Scholar
  148. Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (2001) Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383PubMedGoogle Scholar
  149. Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118:934–946PubMedGoogle Scholar
  150. Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Dröge W, Lehmann V (1995) HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 14:546–554PubMedGoogle Scholar
  151. Wilson CB, Merkenschlager M (2006) Chromatin structure and gene regulation in T cell development and function. Curr Opin Immunol 18:143–151PubMedGoogle Scholar
  152. Wu J, Xie N, Wu Z, Zhang Y, Zheng YG (2009) Bisubstrate inhibitors of the MYST HATs Esa1 and Tip60. Bioorg Med Chem 17:1381–1386PubMedGoogle Scholar
  153. Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, Ferguson DO, Yu X (2011) Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 18:761–768PubMedGoogle Scholar
  154. Xu B, Chiu J, Feng B, Chen S, Chakrabarti S (2008) PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 24:404–412PubMedGoogle Scholar
  155. Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N, Westphal H, Ozato K, Nakatani Y (2000) Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA 97:11303–11306PubMedGoogle Scholar
  156. Yanazume T, Morimoto T, Wada H, Kawamura T, Hasegawa K (2003) Biological role of p300 in cardiac myocytes. Mol Cell Biochem 248:115–119PubMedGoogle Scholar
  157. Yang X, Yu W, Shi L, Sun L, Liang J, Yi X, Li Q, Zhang Y, Yang F, Han X, Zhang D, Yang J, Yao Z, Shang Y (2011) HAT4, a golgi apparatus-anchored B-type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly. Mol Cell 44:39–50PubMedGoogle Scholar
  158. Ying MZ, Wang JJ, Li DW, Yu GZ, Wang X, Pan J, Chen Y, He MX (2010) The p300/CBP associated factor: is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome. Cancer Biol Ther 9:312–320Google Scholar
  159. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138PubMedGoogle Scholar
  160. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347PubMedGoogle Scholar
  161. Zhu Q, Wani AA (2010) Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol 223:283–288PubMedGoogle Scholar
  162. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138:1122–1136PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Ruthrotha Selvi
    • 1
    • 2
  • Snehajyoti Chatterjee
    • 1
  • Rahul Modak
    • 1
  • M. Eswaramoorthy
    • 3
  • Tapas K. Kundu
    • 1
  1. 1.Transcription and Disease Laboratory, Molecular Biology and Genetics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUK
  3. 3.Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations