Advertisement

Epigenetic Regulation of Cancer Stem Cell Gene Expression

  • Sharmila A. Bapat
Part of the Subcellular Biochemistry book series (SCBI, volume 61)

Abstract

The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A ‘stem-like’ state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.

Keywords

Cancer Stem Cell Histone Modification Histone Mark Normal Stem Cell Repressive Chromatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akiyama Y, Maesawa C, Ogasawara S, Terashima M, Masuda T (2003) Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol 163:1911–1919PubMedCrossRefGoogle Scholar
  2. Ammerpohl O, Pratschke J, Schafmayer C, Haake A, Faber W, von Kampen O, Brosch M, Sipos B, von Schonfels W, Balschun K, Rocken C, Arlt A, Schniewind B, Grauholm J, Kalthoff H, Neuhaus P, Stickel F, Schreiber S, Becker T, Siebert R (2011) Hampe J. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma, Int J CancerGoogle Scholar
  3. Aoki R, Chiba T, Miyagi S, Negishi M, Konuma T, Taniguchi H, Ogawa M, Yokosuka O, Iwama A (2010) The polycomb group gene product Ezh2 regulates proliferation and differentiation of murine hepatic stem/progenitor cells. J Hepatol 52:854–863PubMedCrossRefGoogle Scholar
  4. Bapat SA (2007) Evolution of cancer stem cells. Semin Cancer Biol 17:204–213PubMedCrossRefGoogle Scholar
  5. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116PubMedCrossRefGoogle Scholar
  6. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  7. Biancotto C, Frige G, Minucci S (2010) Histone modification therapy of cancer. Adv Genet 70:341–386PubMedCrossRefGoogle Scholar
  8. Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, Hu M, Chen H, Ustyansky V, Antosiewicz JE, Argani P, Halushka MK, Thomson JA, Pharoah P, Porgador A, Sukumar S, Parsons R, Richardson AL, Stampfer MR, Gelman RS, Nikolskaya T, Nikolsky Y, Polyak K (2008) Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci U S A 105:14076–14081PubMedCrossRefGoogle Scholar
  9. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353PubMedCrossRefGoogle Scholar
  10. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335PubMedCrossRefGoogle Scholar
  11. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–530PubMedCrossRefGoogle Scholar
  12. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215PubMedCrossRefGoogle Scholar
  13. Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E, Casado S, Menendez P, Bueno C, Garcia-Castro J, Rubio R, Lapunzina P, Alaminos M, Borghese L, Terstegge S, Harrison NJ, Moore HD, Brustle O, Lopez-Larrea C, Andrews PW, Soria B, Esteller M, Fraga MF (2008) Cancer genes hypermethylated in human embryonic stem cells. PLoS One 3:e3294PubMedCrossRefGoogle Scholar
  14. Cheng Z, Ke Y, Ding X, Wang F, Wang H, Wang W, Ahmed K, Liu Z, Xu Y, Aikhionbare F, Yan H, Liu J, Xue Y, Yu J, Powell M, Liang S, Wu Q, Reddy SE, Hu R, Huang H, Jin C, Yao X (2008) Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response. Oncogene 27:931–941PubMedCrossRefGoogle Scholar
  15. Chi AS, Bernstein BE (2009) Developmental biology. Pluripotent chromatin state. Science 323:220–221PubMedCrossRefGoogle Scholar
  16. De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335PubMedGoogle Scholar
  17. Di Stefano L, Walker JA, Burgio G, Corona DF, Mulligan P, Naar AM, Dyson NJ (2011) Functional antagonism between histone H3K4 demethylases in vivo. Genes Dev 25:17–28PubMedCrossRefGoogle Scholar
  18. Ding WJ, Fang JY, Chen XY, Peng YS (2008) The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dis Sci 53:2083–2089PubMedCrossRefGoogle Scholar
  19. Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M (2005) Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol 25:10338–10351PubMedCrossRefGoogle Scholar
  20. Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 70:47–56PubMedCrossRefGoogle Scholar
  21. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedCrossRefGoogle Scholar
  22. Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1:239–259PubMedCrossRefGoogle Scholar
  23. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135PubMedCrossRefGoogle Scholar
  24. Gokul G, Ramakrishna G, Khosla S (2009) Reprogramming of HeLa cells upon DNMT3L overexpression mimics carcinogenesis. Epigenetics 4:322–329PubMedCrossRefGoogle Scholar
  25. Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, Agrawal A, Rheaume C, Bilanchone V, Veltmaat JM, Takemaru K, Millar S, Lee EY, Lewis MT, Li B, Dai X (2009) Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 185:811–826PubMedCrossRefGoogle Scholar
  26. Han DW, Do JT, Arauzo-Bravo MJ, Lee SH, Meissner A, Lee HT, Jaenisch R, Scholer HR (2009) Epigenetic hierarchy governing Nestin expression. Stem Cells 27:1088–1097PubMedCrossRefGoogle Scholar
  27. Hernandez-Vargas H, Ouzounova M, Calvez-Kelm F, Lambert MP, McKay-Chopin S, Tavtigian SV, Puisieux A, Matar C, Herceg Z (2011) Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics 6:428–439PubMedCrossRefGoogle Scholar
  28. Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86:1315–1328PubMedCrossRefGoogle Scholar
  29. Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477PubMedCrossRefGoogle Scholar
  30. Hsu M, Richardson CA, Olivier E, Qiu C, Bouhassira EE, Lowrey CH, Fiering S (2009) Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp Hematol 37:799–806PubMedCrossRefGoogle Scholar
  31. Huang TH, Esteller M (2010) Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2:a004515PubMedCrossRefGoogle Scholar
  32. Ibragimova I, de Ibanez CI, Hoffman AM, Potapova A, Dulaimi E, Al Saleem T, Hudes GR, Ochs MF, Cairns P (2010) Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila) 3(9):1084–1092CrossRefGoogle Scholar
  33. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133PubMedCrossRefGoogle Scholar
  34. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG (2011) Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513–525PubMedCrossRefGoogle Scholar
  35. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCrossRefGoogle Scholar
  36. Kanno R, Janakiraman H, Kanno M (2008) Epigenetic regulator polycomb group protein complexes control cell fate and cancer. Cancer Sci 99:1077–1084PubMedCrossRefGoogle Scholar
  37. Karanikolas BD, Figueiredo ML, Wu L (2009) Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol Cancer Res 7:1456–1465PubMedCrossRefGoogle Scholar
  38. Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639PubMedCrossRefGoogle Scholar
  39. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108PubMedCrossRefGoogle Scholar
  40. Khavari DA, Sen GL, Rinn JL (2010) DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 9:3880–3883PubMedCrossRefGoogle Scholar
  41. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21:49–54PubMedCrossRefGoogle Scholar
  42. Kotini AG, Mpakali A, Agalioti T (2011) Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells. Mol Cell Biol 31:1577–1592PubMedCrossRefGoogle Scholar
  43. Kubicek S, Schotta G, Lachner M, Sengupta R, Kohlmaier A, Perez-Burgos L, Linderson Y, Martens JH, O’Sullivan RJ, Fodor BD, Yonezawa M, Peters AH, Jenuwein T (2006) The role of histone modifications in epigenetic transitions during normal and perturbed development. Ernst Schering Res Found Workshop , 1–27Google Scholar
  44. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27:2059–2068PubMedCrossRefGoogle Scholar
  45. Kwon OH, Park JL, Kim M, Kim JH, Lee HC, Kim HJ, Noh SM, Song KS, Yoo HS, Paik SG, Kim SY, Kim YS (2011) Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem Biophys Res Commun 406:539–545PubMedCrossRefGoogle Scholar
  46. Li X, Zhao X (2008) Epigenetic regulation of mammalian stem cells. Stem Cells Dev 17:1043–1052PubMedCrossRefGoogle Scholar
  47. Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AR (2004) Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci U S A 101:7341–7346PubMedCrossRefGoogle Scholar
  48. Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG (2009) Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol 175:1246–1254PubMedCrossRefGoogle Scholar
  49. Li Q, O’Malley ME, Bartlett DL, Guo ZS (2011) Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth. Mol Cancer 10:63PubMedCrossRefGoogle Scholar
  50. Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, Wu HC (2010) Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem 285:8719–8732PubMedCrossRefGoogle Scholar
  51. Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16:239–246PubMedCrossRefGoogle Scholar
  52. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRefGoogle Scholar
  53. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349PubMedCrossRefGoogle Scholar
  54. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518PubMedCrossRefGoogle Scholar
  55. McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549PubMedCrossRefGoogle Scholar
  56. McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68:5753–5759PubMedCrossRefGoogle Scholar
  57. Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262PubMedCrossRefGoogle Scholar
  58. Metsuyanim S, Pode-Shakked N, Schmidt-Ott KM, Keshet G, Rechavi G, Blumental D, Dekel B (2008) Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26:1808–1817PubMedCrossRefGoogle Scholar
  59. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedCrossRefGoogle Scholar
  60. Mohr F, Dohner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39:272–281PubMedCrossRefGoogle Scholar
  61. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549PubMedCrossRefGoogle Scholar
  62. Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W, Steger K (2007) DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol 127:175–181PubMedCrossRefGoogle Scholar
  63. Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599–606PubMedCrossRefGoogle Scholar
  64. Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90PubMedCrossRefGoogle Scholar
  65. Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L, Landeira D, Santos J, Banito A, Gil J, Koseki H, Merkenschlager M, Fisher AG (2010) ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6:547–556PubMedCrossRefGoogle Scholar
  66. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068PubMedCrossRefGoogle Scholar
  67. Rada-Iglesias A, Enroth S, Andersson R, Wanders A, Pahlman L, Komorowski J, Wadelius C (2009) Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation. Epigenetics 4:107–113PubMedCrossRefGoogle Scholar
  68. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212PubMedCrossRefGoogle Scholar
  69. Rai K, Sarkar S, Broadbent TJ, Voas M, Grossmann KF, Nadauld LD, Dehghanizadeh S, Hagos FT, Li Y, Toth RK, Chidester S, Bahr TM, Johnson WE, Sklow B, Burt R, Cairns BR, Jones DA (2010) DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142:930–942PubMedCrossRefGoogle Scholar
  70. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556PubMedCrossRefGoogle Scholar
  71. Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232PubMedCrossRefGoogle Scholar
  72. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCrossRefGoogle Scholar
  73. Schiapparelli P, Enguita-German M, Balbuena J, Rey JA, Lazcoz P, Castresana JS (2010) Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep 24:1355–1362PubMedGoogle Scholar
  74. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563–567PubMedCrossRefGoogle Scholar
  75. Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S (2008) Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26:2875–2883PubMedCrossRefGoogle Scholar
  76. Shoae-Hassani A, Sharif S, Verdi J (2011) A neurosteroid, DHEA, could improves somatic cell reprogramming. Cell Biol Int 35(10):1037–10  41Google Scholar
  77. Shukla V, Vaissiere T, Herceg Z (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 637:1–15PubMedCrossRefGoogle Scholar
  78. Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ, Meehan RR, Sims AH, Ramsahoye BH (2011) Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A 108:4364–4369PubMedCrossRefGoogle Scholar
  79. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204:715–722PubMedCrossRefGoogle Scholar
  80. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  81. Tan J, Huang H, Huang W, Li L, Guo J, Huang B, Lu J (2008) The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. J Genet Genomics 35:585–593PubMedCrossRefGoogle Scholar
  82. Teng IW, Hou PC, Lee KD, Chu PY, Yeh KT, Jin VX, Tseng MJ, Tsai SJ, Chang YD, Wu CS, Sun HS, Tsai KD, Jeng LB, Nephew KP, Huang TH, Hsiao SH, Leu YW (2011) Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 71(13):4653–663PubMedCrossRefGoogle Scholar
  83. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446PubMedCrossRefGoogle Scholar
  84. Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6:2911–2927PubMedCrossRefGoogle Scholar
  85. Trowbridge JJ, Snow JW, Kim J, Orkin SH (2009) DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5:442–449PubMedCrossRefGoogle Scholar
  86. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418PubMedCrossRefGoogle Scholar
  87. Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39(12):4984–5002PubMedCrossRefGoogle Scholar
  88. Wade PA (2004) Dynamic regulation of DNA methylation coupled transcriptional repression: BDNF regulation by MeCP2. Bioessays 26:217–220PubMedCrossRefGoogle Scholar
  89. Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6:153–166PubMedCrossRefGoogle Scholar
  90. Walker E, Manias JL, Chang WY, Stanford WL (2011) PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 10:45–51PubMedCrossRefGoogle Scholar
  91. Wani AA, Sharma N, Shouche YS, Bapat SA (2006) Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25:6336–6344PubMedCrossRefGoogle Scholar
  92. Weishaupt H, Sigvardsson M, Attema JL (2010) Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 115:247–256PubMedCrossRefGoogle Scholar
  93. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158PubMedCrossRefGoogle Scholar
  94. Xi S, Geiman TM, Briones V, Guang TY, Xu H, Muegge K (2009) Lsh participates in DNA methylation and silencing of stem cell genes. Stem Cells 27:2691–2702PubMedCrossRefGoogle Scholar
  95. Xie H, Wang M, de Andrade A, Bonaldo MF, Galat V, Arndt K, Rajaram V, Goldman S, Tomita T, Soares MB (2011) Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res 39:4099–4108PubMedCrossRefGoogle Scholar
  96. Yamada Y, Watanabe A (2010) Epigenetic codes in stem cells and cancer stem cells. Adv Genet 70:177–199PubMedCrossRefGoogle Scholar
  97. Yoshimura A (2009) Stat1 phosphorylation is a molecular switch of Ras signaling and oncogenesis. Cell Cycle 8:1981–1982PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.National Centre for Cell ScienceGaneshkhindIndia

Personalised recommendations