Serial Mechanisms

  • Jadran Lenarčič
  • Tadej Bajd
  • Michael M. Stanišić
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 60)

Abstract

Equations for the kinematic analysis of serial mechanisms are introduced. In order to reduce the necessary numerical computations, they are expressed in the form of iterative procedures. The direct and the inverse kinematics problems are formulated and solved. It is shown that in serial mechanisms, the direct kinematics problem is relatively simple to solve, while the inverse kinematics problem includes difficulties associated with the existence of a real solution, with multiple solutions, and with the convergence of iterative numerical procedures.

Keywords

Angular Acceleration Translational Velocity Kinematic Equation Rotation Matrice Joint Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    J. Angeles, Fundamentals of Robotic Mechanical Systems, 3rd edn. (Springer, New York, 2007) MATHCrossRefGoogle Scholar
  2. 22.
    R. Featherstone, Int. J. Robot. Res. 2(2), 35 (1983) CrossRefGoogle Scholar
  3. 23.
    R. Featherstone, Robot Dynamics Algorithms (Kluwer Academic, Dordrecht, 1987) Google Scholar
  4. 24.
    J. Furusho, S. Onishi, in Proceedings 15th International Conference on Industrial Robots, Tokyo (1985), pp. 1051–1058 Google Scholar
  5. 39.
    P. Kovacs, G. Hommel, in Advances in Robot Kinematics, Ferrara, Italy (1992), pp. 88–95 Google Scholar
  6. 40.
    P. Kovacs, G. Hommel, in Computational Kinematics, ed. by J. Angeles, G. Hommel, P. Kovacs (Kluwer Academic, Dordrecht, 1993), pp. 27–39 Google Scholar
  7. 44.
    J. Lenarčič, Robotica 1, 205 (1983) CrossRefGoogle Scholar
  8. 45.
    J. Lenarčič, Robotica 3, 21 (1985) CrossRefGoogle Scholar
  9. 46.
    J. Lenarčič, in International Encyclopedia of Robotics, ed. by R. Dorf (Wiley, New York, 1988) Google Scholar
  10. 69.
    D.L. Pieper, B. Roth, in Proceedings 2nd International Congress of the Theory of Machines and Mechanisms, Zakopane, Poland (1969), pp. 159–169 Google Scholar
  11. 73.
    B. Roth, in Computational Kinematics, ed. by J. Angeles, G. Hommel, P. Kovacs (Kluwer Academic, Dordrecht, 1993), pp. 3–14 Google Scholar
  12. 74.
    B. Roth, in Advances in Robot Kinematics and Computational Geometry, ed. by J. Lenarčič, B. Ravani (Kluwer Academic, Dordrecht, 1994), pp. 7–16 Google Scholar
  13. 77.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 2000) CrossRefGoogle Scholar
  14. 84.
    L.W. Tsai, Robot Analysis, The Mechanics of Serial and Parallel Manipulators (Wiley, New York, 1999) Google Scholar
  15. 87.
    C.W. Wampler, A.P. Morgan, A.J. Sommesse, J. Mech. Des. 112, 59 (1990) CrossRefGoogle Scholar
  16. 90.
    D.E. Whitney, IEEE Trans. Man-Mach. Syst. MMS-10, 47 (1969) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jadran Lenarčič
    • 1
  • Tadej Bajd
    • 2
  • Michael M. Stanišić
    • 3
  1. 1.J. Stefan InstituteLjubljana-Vic-RudnikSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana-Vic-RudnikSlovenia
  3. 3.Aerospace and Mechanical EngineeringNotre Dame UniversityNotre DameUSA

Personalised recommendations