• Jadran Lenarčič
  • Tadej Bajd
  • Michael M. Stanišić
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 60)


This chapter begins with a description of the different types of mechanisms that are generally used, especially in industrial robots. The parameters and variables of the mechanisms are defined and the degrees of freedom are calculated. Two methods to model a mechanism are presented. We show that in the Denavit-Hartenberg method, the attachment of local coordinate frames to the links is precisely specified, and relative to these frames a minimum number of translational and rotational parameters that describe the relative pose of two neighboring links are defined. In the so-called method of Vector Parameters, link and joint vectors are used to determine the geometry of the mechanism. As the reference position of a mechanism is a free choice, this method enables us to select the most appropriate reference position with respect to the requirements of the robot task.


Coordinate Frame Parallel Mechanism Kinematic Chain Reference Position Rotational Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.
    T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics (Springer, Dordrecht, 2010) zbMATHCrossRefGoogle Scholar
  2. 15.
    J.J. Craig, Introduction to Robotics: Mechanics and Control, 3rd edn. (Pearson/Prentice-Hall, Upper Saddle River, 2005) Google Scholar
  3. 17.
    J. Denavit, R.S. Hartenberg, J. Appl. Mech. 22(2), 215 (1955) MathSciNetzbMATHGoogle Scholar
  4. 21.
    J. Duffy, Analysis of Mechanisms and Robot Manipulators (Arnold, London, 1980) Google Scholar
  5. 46.
    J. Lenarčič, in International Encyclopedia of Robotics, ed. by R. Dorf (Wiley, New York, 1988) Google Scholar
  6. 67.
    R. Paul, Robot Manipulators: Mathematics, Programming and Control (MIT Press, Cambridge, 1981) Google Scholar
  7. 77.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 2000) CrossRefGoogle Scholar
  8. 79.
    Y. Stepanenko, M. Vukobratović, Math. Biosci. 28, 137 (1976) MathSciNetCrossRefGoogle Scholar
  9. 84.
    L.W. Tsai, Robot Analysis, The Mechanics of Serial and Parallel Manipulators (Wiley, New York, 1999) Google Scholar
  10. 86.
    M. Vukobratović, M. Kirćanski, Kinematics and Trajectory Synthesis of Manipulation Robots (Springer, Berlin, 1986) zbMATHCrossRefGoogle Scholar
  11. 93.
    V.M. Zatsiorsky, Kinematics of Human Motion (Human Kinetics, Champaign, 1998) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jadran Lenarčič
    • 1
  • Tadej Bajd
    • 2
  • Michael M. Stanišić
    • 3
  1. 1.J. Stefan InstituteLjubljana-Vic-RudnikSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana-Vic-RudnikSlovenia
  3. 3.Aerospace and Mechanical EngineeringNotre Dame UniversityNotre DameUSA

Personalised recommendations