Differential Fault Analysis on Block Cipher LED-64

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 164)


LED-64 is a 64-bit block cipher proposed in CHES 2011 and suitable for the efficient implementation in constrained hardware environments such as WSN. In this paper, we propose a differential fault analysis on LED-64. In order to recover the secret key of LED-64, this attack requires only one random nibble fault and an exhaustive search of 28. This work is the first known cryptanalytic result on LED-64.


Block cipher LED-64 Differential fault analysis 


  1. 1.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystem. J. Cryptol 4, 3–72 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) Eurocrypt 1993. LNCS, vol. 765, pp. 386–397. Springer, New York (1994)Google Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Burton, K. (ed.) Crypto 1997. LNCS, vol. 1294, pp. 513–525. Springer, Berlin (1997)Google Scholar
  4. 4.
    Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna, C. and Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Li, W., Gu, D., Li. J.: Differential fault analysis on the ARIA algorithm. Inf. Sci. 10(178), 3727–3737 (2008)Google Scholar
  6. 6.
    Jeong, K., Lee, Y., Sung, J., Hong, S.: Differential fault analysis on block cipher SEED. Math. Comput. Model. 55, 26–34 (2012)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen, H., Wu, W., Feng, D.: Differential fault analysis on CLEFIA. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Cannière, C., Dunkelman, O. and Knežević, M.: KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers. In: Clavier, C. and Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 16–32. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.: PRINTcipher: a block cipher for IC-printing. In: Mangard, S., Standaert, F. (eds.) CHES 2010, LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Guo, J., Peyrin, T., Poschmann, A., Tobshaw, M.: The LED Block Cipher. In: Preneel, B. and Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T, Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Fukunaga, T., Takahashi, J.: Practical fault attack on a cryptographic LSI with IOS/IEC 18033-3 block ciphers. In: Breveglieri, L., Koren, I., Naccache, D., Oswald, E. and Seifert, J. (eds.) FDTC 2009. pp. 84–92. IEEE Computer Society, Washington, DC (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dortdrecht 2012

Authors and Affiliations

  1. 1.Center for Information Security Technologies (CIST)Korea UniversitySeoulKorea
  2. 2.Department of Computer Science and EngineeringSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations