Destination Guided Mobility Models for Mobile Ad Hoc Networks

  • Alex Aravind
  • Viswanathan Manickam
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 164)


Mobility models play an influential role in the simulation studies of mobile ad hoc networks. This paper contains two main contributions related to mobility models: (i) a framework of new mobility models that are simple and effective, and (ii) a software tool to generate, visualize, and analyze the generated mobility traces. The appeal of the proposed models is that they are almost as simple as the popular random waypoint model, but powerful enough to generate realistic mobility traces with desired characteristics. The power and versatility of the proposed models are illustrated using limited simulation experiments.


Mobility models Mobile ad hoc and sensor networks Performance measurement Trace analysis Software tool 


  1. 1.
    Andel, T.R., Yasinsac, A.: On the Credibility of Manet Simulations. IEEE Computer 48–54 (2006)Google Scholar
  2. 2.
    Aravind, A., Tahir, H.: Towards Modeling Realistic Mobility for Performance Evaluations in MANET. LNCS, Springer-Verlag 6288, 109–122 (2010)Google Scholar
  3. 3.
    Aschenbruck, N., A survey on mobility models for performance analysis in tactical mobile networks. J. Telecommun. Inf. Technol. 2, 54–61 (2008)Google Scholar
  4. 4.
    Aschenbruck, N., Munjal, A., Camp, T.: Trace-based mobility modeling for multi-hop wireless networks. Comput. Commun. 34, 704–714 (2011)CrossRefGoogle Scholar
  5. 5.
    Bai, F., Helmy, A.: A survey of mobility models in wireless Ad-hoc networks. Wireless Ad Hoc and Sensor Networks, pp.1–30. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Blazevic, L., et al.: Self organized terminode routing. J. Clust. Comput. 5(2), 205–218 (2002)CrossRefGoogle Scholar
  7. 7.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for Ad-hoc network research. Wirel. Commun. Mobile Comput. 2 (5), 438–502 (2002)Google Scholar
  8. 8.
    Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: ACM Proceedings of the POMC, pp. 38–43. ACM press, NY (2002)Google Scholar
  9. 9.
    Chu, T., Nikolaidis, I.: Node density and connectivity properties of the random waypoint model. Comput. Commun. 27, 914–922 (2004)CrossRefGoogle Scholar
  10. 10.
    Collins, J., Bagrodia, R.: A quantitative comparison of communication paradigms for MANETs. In: Proceedings of the 7th International ICST Conference on MobiQuitous, pp.261–272. Springer, Sydney (2010)Google Scholar
  11. 11.
    Ekman, F., Keranen, A., Karvo, J., Ott, J.: Working day movement model. In: Proceedings of the Mobility Models, ACM press, NY, 33–40 (2008)Google Scholar
  12. 12.
    Feeley, M., Hutchinson, N., Ray, S.: In: Proceeding of the International Conference on Ad Hoc Networks and Wireless (ADHOC-NOW), pp. 324–329. Springer, Berlin (2004)Google Scholar
  13. 13.
    Gerla, M., Kleinrock, L.: Vehicular networks and the future of the mobile internet. Comput. Netw. 55, 457–469 (2011)Google Scholar
  14. 14.
    Gonzalez, M., Hidalgo, C., Barabasi, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  15. 15.
    Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutor. 4, 19–41 (2009)CrossRefGoogle Scholar
  16. 16.
    Hsu, W., et al.: Weighted waypoint mobility model and its impact on Ad Hoc networks. Mobile Comput. Commun. Rev. 9(1), 59–63 (2005)CrossRefGoogle Scholar
  17. 17.
    Jardosh, P., Towards realistic mobility models for mobile Ad-hoc networks. In: Procedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 217–229. ACM, San Diego (2003)Google Scholar
  18. 18.
    Kleinrock, L.: History of the internet and its flexible future. IEEE Wirel. Commun. 8–18 (2008)Google Scholar
  19. 19.
    Kurkowski, S., Camp, T., Colagrosso, M.: Manet simulation studies: The incredibles. ACM Mobile Computing Commun. Rev. 9(4), 50–61 (2005)CrossRefGoogle Scholar
  20. 20.
    Maeda, K., et al.: Urban pedestrian mobility for mobile wireless network simulation. Ad Hoc Netw. 7(1), 153–170 (2009)CrossRefGoogle Scholar
  21. 21.
    Musolesi, M., Mascolo, C.: Mobility models for systems evaluation—A Survey. Middleware for Network Eccentric and Mobile Applications, 43–62 (2009)Google Scholar
  22. 22.
    The Network Simulator ns-2,
  23. 23.
    Petz, J.E., Julien, C.: A framework for evaluating DTN mobility models. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, ACM press, Rome (2009)Google Scholar
  24. 24.
    Roy, R.: Handbook of Mobile Ad Hoc Networks for Mobility Models, Springer, Boston (2011)Google Scholar
  25. 25.
    Scourias, J., Kunz, T.: An activity-based mobility model and location management simulation framework. In: Proceedings of the 2nd ACM workshop on modeling, analysis and simulation of wireless and mobile systems, pp. 61–68. ACM press, Seattle (1999)Google Scholar
  26. 26.
    Song, Z., Qu, N., Blumm, A.-L., Barabasi, A.: Limits of predictability in human mobility. Science 327, 1018–1021, (2010)Google Scholar
  27. 27.
    Stojmenovic, I.: Simulations in wireless sensor and Ad Hoc networks. Matching and advancing models, metrics, and solutions, IEEE Commun. Mag. 46(12), 102–107 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dortdrecht 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations