Glassy Behavior of Laser

  • Viola Folli
Part of the Springer Theses book series (Springer Theses)


The thesis so far has treated the relative feedback between nonlinearity and disorder in the radiation-matter interaction processes by using a perturbative approach for what concerns the theoretical analysis. Furthermore, we dealt with a limited number of localizations. In the previous chapter, for example, we studied the interaction of a single localized wave-form (just one soliton) with the surface Anderson localizations. We have treated both nonlinearity that disorder as a perturbation. One can argue if is it possible to study the emerging phenomena by treating nonlinearity and disorder on the same level. What happens if we simultaneously consider the light-matter interaction when a large number of localizations are taken into account? Is it possible to employ some method dealing with physical systems with multiple bodies? In order to apply the mean-field theories for many bodies systems, we treat with a standard Random Laser (RL). Later we discuss with details the physical features of this kind of laser, for now it is enough to know that a RL is an optical device sustaining laser action in a disordered medium. This system presents a large number of electromagnetic modes with overlapping resonances. So the RL displays all the features we are looking for: many disorderly distributed states interacting in a nonlinear manner. We are dealing with a complex system and we need an analytical framework able to treat the multi bodies problem. Through some approximations, it is possible to express the interacting light in the disordered resonant system via very general equations, relating to a mean-field spin-glass model [1]. The Spin-Glass theory is an approach to obtain the dynamical and thermodynamical behaviors of a complex system. We solve our model with the replica method, a subtle trick for which the physical system is replicated n-times in order to calculate the partition function and all the physical observables. By operating on the degree of disorder and nonlinearity (through the energy furnished to the system), we are able to obtain the phase-diagram of the RL, describing the very interesting complex landscape of behavior of the nonlinear waves in random systems


Partition Function Electromagnetic Mode Replica Method Random Laser Replica Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mézard M, Parisi G, Virasoro MA (1987) Spin glass theory and beyond. World Scientific, SingaporezbMATHGoogle Scholar
  2. 2.
    Cao H (2003) Waves in random media and complex media, vol 13, p R1Google Scholar
  3. 3.
    John S, Pang G (1996) Phys Rev A 54:3642ADSCrossRefGoogle Scholar
  4. 4.
    Lubatsch A, Kroha J, Busch K (2005) Phys Rev A 71:184201ADSGoogle Scholar
  5. 5.
    Wiersma DS, Vanalbada MP, Lagendijk A (1995) Nature 373:203ADSCrossRefGoogle Scholar
  6. 6.
    Lepri S, Cavalieri S, Oppo G, Wiersma D (2007) Phys Rev A 75:063820ADSCrossRefGoogle Scholar
  7. 7.
    Angelani L, Conti C, Ruocco G, Zamponi F (2006) Phys Rev Lett 96:065702ADSCrossRefGoogle Scholar
  8. 8.
    Beenakker CWJ (1998) Phys Rev Lett 81:1829ADSCrossRefGoogle Scholar
  9. 9.
    Zhang D et al (1995) Opt Commun 118:462CrossRefGoogle Scholar
  10. 10.
    Polson RC, Vardeny ZV (2004) Appl phys lett 85:1289ADSCrossRefGoogle Scholar
  11. 11.
    Siddique M, Alfano RR, Berger GA, Kempe M, Genack AZ (1996) Opt Lett 21:450 Google Scholar
  12. 12.
    Florescu L, John S (2004) Phys Rev Lett 93:013602ADSCrossRefGoogle Scholar
  13. 13.
    Deych LI (2005) Phys Rev Lett 95:043902ADSCrossRefGoogle Scholar
  14. 14.
    Tureci HE, Ge L, Rotter S, Stone AD (2008) Science 320:643ADSCrossRefGoogle Scholar
  15. 15.
    Patra M (2002) Phys Rev A 65:0403809ADSCrossRefGoogle Scholar
  16. 16.
    Hackenbroich G, Viviescas C, Elattari B, Haake F (2001) Phys Rev Lett 86:5262ADSCrossRefGoogle Scholar
  17. 17.
    Berger GA, Kempe M, Genack AZ (1997) Phys Rev E 56:6118ADSCrossRefGoogle Scholar
  18. 18.
    Conti C, Leonetti M, Fratalocchi A, Angelani L, Ruocco G (2008) Phys Rev Lett 101:143901ADSCrossRefGoogle Scholar
  19. 19.
    Wiersma DS (2008) Nat Phys 4:359CrossRefGoogle Scholar
  20. 20.
    Ambartsumyan R, Basov N, Kryukov P, Lethokov S (1996) IEEE J Quantum Electron 2:442ADSCrossRefGoogle Scholar
  21. 21.
    Schawlow AL, Townes CH (1958) Phys Rev 112:1940ADSCrossRefGoogle Scholar
  22. 22.
    Haken H (1978) Synergetics. Springer-Verlag, BerlinzbMATHCrossRefGoogle Scholar
  23. 23.
    Weill R, Rosen A, Gordon A, Gat O, Fischer B (2005) Phys Rev Lett 95:013903ADSCrossRefGoogle Scholar
  24. 24.
    Angelani L, Conti C, Prignano L, Ruocco G, Zamponi F (2007) Phys Rev B 76:064202ADSCrossRefGoogle Scholar
  25. 25.
    Haus HA (2000) IEEE J Quantum Electron 6:1173CrossRefGoogle Scholar
  26. 26.
    Cao H, Jiang X, Ling Y, Xu JX, Soukoulis CM (2003) Phys Rev B 67:161101RADSCrossRefGoogle Scholar
  27. 27.
    Gordon A, Fischer B (2003) Opt Comm 223:151ADSCrossRefGoogle Scholar
  28. 28.
    Angelani L, Conti C, Ruocco G, Zamponi F (2006) Phys Rev B 74:104207ADSCrossRefGoogle Scholar
  29. 29.
    Gardner E (1985) Nucl Phys B 257:747ADSCrossRefGoogle Scholar
  30. 30.
    Crisanti A, Sommers H-J (1992) Zeit Phys B 87:341ADSCrossRefGoogle Scholar
  31. 31.
    Gordon A, Fischer B (2002) Phys Rev Lett 8:103901ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaSapienza Università di RomaRomeItaly

Personalised recommendations