Weakly Disordered Nonlinear Schroedinger Equation

  • Viola Folli
Part of the Springer Theses book series (Springer Theses)


By using a perturbational approach, we analyze the evolution of solitary waves in a nonlocal medium in the presence of perturbative disorder. An increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. We compare the analytical predictions with numerical simulations based on stochastic partial differential equations.


Solitary Wave Random Fluctuation Stochastic Partial Differential Equation Evolution Coordinate Nonlocal Nonlinear Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Królikowski W, Bang O (2000) Phys Rev E 63:016610ADSCrossRefGoogle Scholar
  2. 2.
    Stoof H (1999) J Low Temp Phys 114:11CrossRefGoogle Scholar
  3. 3.
    Conti C, Ruocco G, Trillo S (2005) Phys Rev Lett 95:183902ADSCrossRefGoogle Scholar
  4. 4.
    Snyder AW, Mitchell DJ (1997) Science 276:1538CrossRefGoogle Scholar
  5. 5.
    Iannone E, Matera F, Mecozzi A, Settembre M (1998) Nonlinear optical communication networks. Wiley, New YorkGoogle Scholar
  6. 6.
    Gordon JP, Haus HA (1986) Opt Lett 11:665ADSCrossRefGoogle Scholar
  7. 7.
    Werner MJ, Drummond PD (1997) J Comput Phys 132:312MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Qiang J, Habib S (2000) Phys Rev E 62:7430ADSCrossRefGoogle Scholar
  9. 9.
    Conti C, Peccianti M, Assanto G (2004) Phys Rev Lett 92:113902ADSCrossRefGoogle Scholar
  10. 10.
    Kartashov YV, Vysloukh VA, Torner L (2008) Phys. Rev. A 77:051802 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaSapienza Università di RomaRomeItaly

Personalised recommendations