Advertisement

Textual analysis and scientometric mapping of the dynamic knowledge in and around the IFSA community

  • Marc BarbierEmail author
  • Marianne Bompart
  • Véronique Garandel-Batifol
  • Andréi Mogoutov
Chapter

Abstract

Using the proceedings of six European IFSA Symposia, we analysed the themes that were central in these Symposia as well as trends from a number of papers and authors. We then assessed the wider domain of agricultural research based on a corpus extracted from the CAB and SCI databases of the Web of Knowledge. The co-word analysis allows the generation of maps which graphically represent how keywords are linked, and allows the identification of thematic clusters. The dynamic of keywords in the period 1991–2007 was also analysed, thus allowing the identification of keywords which were of central importance during different periods. This showed how themes such as sustainability emerged, disappeared and re-emerged under different guises. The various analyses are provided to further the reflexivity of the IFSA community, especially regarding its publication practices and thus its efforts to make results from Farming Systems Research more widely available.

Keywords

Science Citation Index Scientific Context Bibliographic Notice Agronomic Research Science Citation Index Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank especially Benoit Dedieu, Bernard Hubert and Marianne Cerf for their availability in the hectic times of their own activities. We also want to thank Jean-Marc Meynard, the Head of the SAD Department of INRA, who brought a financial support to this research. Thanks also to those who proposed comments and critics during the Clermont-Ferrand symposium, and to the Board of IFSA, which has welcome the results of this research. We would like to thank Ika Darnhofer for her careful editorial work, which considerably helped to clarify the presentation of our work. The final thank you is for Jean-Philippe Cointet, who does a lot to design new algorithms and methodology of visualising graphs like in the Map 4.2.

References

  1. Barbier, M. (2010). The ecologization of agricultural development and the treadmill of sustainable development, a critique in a state of transition. Przeglad Socjologiczny (Sociological Review), 59, 9–28.Google Scholar
  2. Barbier, M., François-Moll, F., Vichnevskaia, T., & Mogoutov, A. (2008, April 8). Figures de la “soutenabilité” dans des bases de données scientifiques du “Web of Science”. Exploration et discussion de traitements scientométriques. Presentation at the Seminar ‘Changement climatique, expertise et fabrications du futur: Modèles et scénarios, politique et gouvernance’ held in Paris.Google Scholar
  3. Bourret, P., Mogoutov, A., Julian-Reynier, C., & Cambrosio, A. (2006). A new clinical collective for French cancer genetics a heterogeneous mapping analysis. Science, Technology & Human Values, 31, 431–464.CrossRefGoogle Scholar
  4. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22, 191–235.CrossRefGoogle Scholar
  5. Callon, M., Law, J., & Rip, A. (1986). Mapping the dynamics of science and technology. London: Macmillan.Google Scholar
  6. Cambrosio, A., Keating, P., & Mogoutov, A. (2004). Mapping collaborative work and innovation in biomedicine: A computer assisted analysis of antibody reagent workshops. Social Studies of Science, 34, 325–364.CrossRefGoogle Scholar
  7. Cambrosio, A., Keating, P., Mercier, S., Lewisonc, G., & Mogoutov, A. (2006). Mapping the emergence and development of translational cancer research. European Journal of Cancer, 24, 3140–3148.CrossRefGoogle Scholar
  8. Cambrosio, A., Cotterau, P., Popowycz, S., Mogoutov, A., & Vichnevskaia, T. (2010). Analysis of heterogenous networks: The ReseauLu project. In C. Brossaud & B. Reber (Eds.), Digital cognitive technologies. Epistemology and knowledge society (pp. 137–152). London: ISTE/Wiley.Google Scholar
  9. Chavalarias, D., & Cointet, J. P. (2008). Bottom-up scientific field detection for dynamical and hierarchical science mapping, methodology and case study. Scientometrics, 75, 37–50.CrossRefGoogle Scholar
  10. Ding, Y., & Foo, S. (2002). Ontology research and development. A review of ontology mapping and evolving. Part 1. Journal of Information Science, 28, 123–136.Google Scholar
  11. Granjou, C., & Barbier, M. (2010). Les métamorphoses de l’expertise. Versailles: Quæ.Google Scholar
  12. Jones, D. S., Cambrosio, A., & Mogoutov, A. (2011). Detection and characterization of translational research in cancer and cardiovascular medicine. Journal of Translational Medicine, 9, 57 [http://www.translational-medicine.com/content/9/1/57].Google Scholar
  13. Latour, B., et Fabbri, P. (1977). Pouvoir et devoir dans un article de science exacte, Actes de la Recherche en Sciences Sociales, 13, 81–95.CrossRefGoogle Scholar
  14. Law, J., Bauin, S., & Courtial J.P.(1988). Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification, Scientometrics,14, 3–4, 251–264.CrossRefGoogle Scholar
  15. Leydesdorff, L., & Hellsten, I. (2006). Measuring the meaning of words in contexts: An automated analysis of controversies about ‘Monarch butterflies’, ‘Frankenfoods’, and ‘stem cells’. Scientometrics, 67, 231–258.CrossRefGoogle Scholar
  16. Lucio-Arias, D., & Leydesdorff, L. (2007). Knowledge emergence in scientific communication: From ‘fullerenes’ to ‘nanotubes’. Scientometrics, 70, 603–632.CrossRefGoogle Scholar
  17. Mogoutov, A., and Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking, Research Policy, 36, 6, 893-903CrossRefGoogle Scholar
  18. Noyons, E. (2001). Bibliometric mapping of science in a policy context. Scientometrics, 50, 83–98.CrossRefGoogle Scholar
  19. Ollivier, G., & Bellon, S. (2010, February 24–26). Scientometric mapping of agroecology: Looking for a legend? In: P. Stassart & P. Baret (Eds.), The potential of agroecology to contribute to ecological transitions in agriculture. Proceedings of an EU Exploratory Workshop held in Arlon, Belgium.Google Scholar
  20. Powell, W. W., White, D. R., Koput, K. W., & Owen-Smith, J. (2005). Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences. American Journal of Sociology, 110, 901–975.CrossRefGoogle Scholar
  21. Reinert, M. (1990). ALCESTE, une méthodologie d’analyse des données textuelles et une application: Aurélia de Gérard de Nerval. Bulletin de Méthodologie Sociologique, 26, 24–54.CrossRefGoogle Scholar
  22. Roth, C., & Cointet, J.-P. (2010). Social and semantic coevolution in knowledge networks. Social Networks, 32, 16–29.CrossRefGoogle Scholar
  23. Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases, 1, 261–377.CrossRefGoogle Scholar
  24. Small, H. (1973). Co-citation in scientific literature: A new measure of the relationship between publications. Journal of the American Society for Information Science, 24, 265–269.CrossRefGoogle Scholar
  25. Taramasco, C., Cointet, J.-P., & Roth, C. (2010). Academic team formation as evolving hypergraphs. Scientometrics, 85, 721–740.CrossRefGoogle Scholar
  26. Tari, T., Breucker, P., & Barbier, M. (2010). Characterising the localisation of projects collaborations in research dynamics: Methodological requirements and results for new visualisations of heterogeneous networks. In Proceedings of the ENID Conference Held in Paris, 2010.Google Scholar
  27. Turenne, N., & Barbier, M. (2004). BELUGA: Un outil pour l’analyse dynamique des connaissances de la littérature scientifique d’un domaine. Première application au cas des maladies à prions. In G. Hébrail & L. Lebart (Eds.), Proceedings of extraction et gestion de connaissances, Clermont-Ferrand, France.Google Scholar
  28. Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. Knowledge Engineering Review, 11, 93–136.CrossRefGoogle Scholar
  29. Vanloqueren, G., & Baret, P. (2009). How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy, 38, 971–983.CrossRefGoogle Scholar
  30. Wezel, A., & Soldat, V. (2009). A quantitative and qualitative historical analysis of the scientific discipline of agroecology. International Journal of Agricultural Sustainability, 7, 3–18.CrossRefGoogle Scholar
  31. Zitt, M., & Bassecoulard, L. (2005). Reassessment of co-citation methods for science indicators: Effect of methods improving recall rates. Scientometrics, 37, 223–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Marc Barbier
    • 1
    Email author
  • Marianne Bompart
    • 2
  • Véronique Garandel-Batifol
    • 2
  • Andréi Mogoutov
    • 3
  1. 1.INRA Sens, IFRISMarne la ValléeFrance
  2. 2.INRA SADToulouseFrance
  3. 3.AGUIDEL, IFRISMarne la ValléeFrance

Personalised recommendations