Abstract
Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.
Keywords
- Social Agent
- Irrigate Land
- Mixed Integer Programming Problem
- Transdisciplinary Process
- Group Model Building
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options





References
Alam, M. S., Bala, B. K., & Huq, A. M. Z. (1997). Simulation of integrated rural energy system for farming in Bangladesh. Energy, 22, 591–599.
Amede, T., & Delve, R. J. (2008). Modelling crop-livestock systems for achieving food security and increasing production efficiencies in the Ethiopian Highlands. Experimental Agriculture, 44, 441–452.
Andersen, D. F., & Richardson, G. P. (1997). Scripts for group model building. System Dynamics Review, 13, 107–129.
Arquitt, S., & Honggang, X. (2005). A system dynamics analysis of boom and bust in the shrimp aquaculture industry. System Dynamics Review, 21, 305–324.
Bach, N. L., & Saeed, K. (1992). Food self-sufficiency in Vietnam: A search for a viable solution. System Dynamics Review, 8, 129–148.
Bala, B. K. (1997). Computer modelling of the rural energy system and CO2 emissions for Bangladesh. Energy, 22, 999–1003.
Bala, B. K., & Satter, M. A. (1989). System dynamics simulation and optimization of aquacultural systems. Aquacultural Engineering, 8, 381–191.
Bala, B. K., Satter, M. A., Halim, M. A., & Talukdar, M. S. U. (1988). Simulation of crop-irrigation systems. Agricultural Systems, 27, 51–65.
Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12, 183–210.
Barlas, Y. (2002). System dynamics: Systemic feedback modelling for policy analysis. In Knowledge for sustainable development – An insight into the encyclopedia of life support systems (pp. 1131–1175). Paris: UNESCO Publishing-Eolss Publishers.
Barlas, Y. (2007). Structure and behavior software demonstration: SiS and BTS II. 25th international conference of the System Dynamics Society, Boston, MA.
Barnaud, C., Bousquet, F., & Trebuil, G. (2008). Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand. Ecological Economics, 66, 615–627.
Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. (2007). The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93, 90–114.
Bawden, R. (1995). On the system dynamics in FSR. Journal of Farming Systems Research and Extension, 5, 1–18.
Belcher, K. W., Boehm, M. M., & Fulton, M. E. (2004). Agroecosystem sustainability: A system simulation model approach. Agricultural Systems, 79, 225–241.
Berger, T., Schreinemachers, P., & Woelcke, J. (2006). Multi-agent simulation for the targeting of development policies in less-favored areas. Agricultural Systems, 88, 28–43.
Bertomeu, M., Bertomeu, M., & Gimenez, J. C. (2006). Improving adoptability of farm forestry in the Philippine uplands: A linear programming model. Agroforestry Systems, 68, 81–91.
Blackmore, C., Cerf, M., Ison, R., & Paine, M. (2012). The role of action-oriented learning theories for change in agriculture and rural networks. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 159–177). Dordrecht: Springer.
Bonabeau, E. (2002). Agent-based modelling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl. 3), 7280–7287.
Bontkes, T. E. S. (1993). Dynamics of rural development in southern Sudan. System Dynamics Review, 9, 1–21.
Borschev, A., & Filippov, A. (2004). From system dynamics and discrete event to practical agent based modelling: Reasons, techniques, tools. 22nd international conference of the System Dynamics Society, Oxford, UK. Retrieved on 12 April 2012 from www.systemdynamics.org/conferences/2004/SDS_2004/PAPERS/381BORSH.pdf
Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecological Modelling, 176, 313–332.
Camarena, E. A., Gracia, C., & Sixto, J. M. C. (2004). A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering, 87, 145–154.
Chardon, X., Raison, C., Le Gall, A., Morvan, T., & Faverdin, P. (2008). Fumigene: A model to study the impact of management rules and constraints on agricultural waste allocation at the farm level. Journal of Agricultural Science, 146, 521–539.
Danzig, G. B., & Thapa, M. N. (1997). Linear programming. 1. Introduction. Berlin: Springer.
Darnhofer, I., Bellon, S., Dedieu, B., & Milestad, R. (2010). Adaptiveness to enhance the sustainability of farming systems. A review. Agronomy for Sustainable Development, 30, 545–555.
Darnhofer, I., Gibbon, D., & Dedieu, B. (2012). Farming Systems Research: An approach to inquiry. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 3–31). Dordrecht: Springer.
Davidsen, P. I., & Asheim, L. J. (1993). A system dynamics approach to the structure and economy of fur farming and trading. System Dynamics Review, 9, 265–285.
Day, R. H. (1963). On aggregating linear programming models of production. Journal of Farm Economics, 45, 797–813.
De Cara, S., Houze, M., & Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: A spatial assessment of sources and abatement costs. Environmental & Resource Economics, 32, 551–583.
Deffuant, G. (2001). Improving agri-environmental policies: A simulation approach to the cognitive properties of farmers and institutions (IAGES final report). Retrieved on 12 April 2012 from http://wwwlisc.clermont.cemagref.fr/ImagesProject/freport.pdf
Demirel, G. (2006). Aggregated and disaggregated modelling approaches to multiple agent dynamics. 24th international conference of the System Dynamics Society, Nijmagen, The Netherlands. Retrieved on 12 April 2012 from http://www.systemdynamics.org/conferences/2006/proceed/papers/DEMIR270.pdf
Dent, J. B., Edwards-Jones, G., & McGregor, M. J. (1995). Simulation of ecological, social and economic factors in agricultural systems. Agricultural Systems, 49, 337–351.
Dogliotti, S., van Ittersum, M. K., & Rossing, W. A. H. (2005). A method for exploring sustainable development options at farm scale: A case study for vegetable farms in South Uruguay. Agricultural Systems, 86, 29–51.
Doppler, W. (2000). Farming and rural systems – State of the art in research and development. In W. Doppler & J. Calatrava (Eds.), Technical and social systems approaches for sustainable rural development (pp. 3–21). Weikersheim: Markgraf.
Dudley, R. (2004). Modelling the effects of a log export ban in Indonesia. System Dynamics Review, 20, 99–116.
Etienne, M. (Ed.). (2011). Companion modelling. A participatory approach to support sustainable development. Versailles: Edition Quae.
Etienne, M., Le Page, C., & Cohen, M. (2003). A Step-by-step approach to building land management scenarios based on multiple viewpoints on multi-agent system simulations. Journal of Artificial Societies and Social Simulation, 6(2). Retrieved on 12 April 2012 from http://jasss.soc.surrey.ac.uk/6/2/2.html
Feola, G., & Binder, C. R. (2010). Towards an improved understanding of farmers’ behaviour: The integrative agent-centred (IAC) framework. Ecological Economics, 69, 2323–2333.
Feola, G., Gallati, J., & Binder, C. R. (2012). Exploring behavioural change through an agent-oriented system dynamics model. The use of personal protective equipment among pesticide applicators in Colombia. System Dynamics Review, 28, 68–93.
Fernandez, J. M., & Selma, M. A. E. (2004). The dynamics of water scarcity on irrigated landscapes: Mazzaron Aguilas in South-Eastern Spain. System Dynamics Review, 20, 117–137.
Fokkens, B., & Puylaert, M. (1981). A linear-programming model for daily harvesting operations at the large-scale grain farm of the Ijsselmeerpolders Development Authority. Journal of the Operational Research Society, 32, 535–547.
Ford, A. (2010). Modelling the environment. Washington, DC: Island Press.
Forrester, J. W. (1971). World dynamics. Cambridge: Wright-Allen Press.
Freeman, T., Nolan, J., & Schoney, R. (2009). An agent-based simulation model of structural change in Canadian prairie agriculture, 1960–2000. Canadian Journal of Agricultural Economics, 57, 537–554.
Georgiadis, P., Vlachos, D., & Iakovou, E. (2005). A system dynamics modelling framework for the strategic supply chain management of food chains. Journal of Food Engineering, 70, 351–364.
Gibbon, D. (2012). Methodological themes in Farming Systems Research and implications for learning in higher education. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 95–115). Dordrecht: Springer.
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768.
Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11, 49. Retrieved on 12 April 2012 from http://www.ecologyandsociety.org/vol11/iss1/art49/
Heady, E. O. (1954). Simplified presentation and logical aspects of linear programming technique. Journal of Farm Economics, 36, 1035–1048.
Heckelei, T. (2002). Calibration and estimation of programming models for agricultural supply analysis. Habilitation thesis, University of Bonn, Germany.
Hubert, B., Ison, R., Sriskandarajah, N., Blackmore, C., Cerf, M., Avelange, I., Barbier, M., & Steyaert, P. (2012). Learning in European agricultural and rural networks: Building a systemic research agenda. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 179–200). Dordrecht: Springer.
Janssen, M., & Ostrom, E. (2006). Empirically-based, agent-based models. Ecology and Society, 11, 37. Retrieved on 12 April 2012 from http://www.ecologyandsociety.org/vol11/iss2/art37/
Janssen, S., & van Ittersum, M. K. (2007). Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agricultural Systems, 94, 622–636.
Jatoe, J. B. D., Yiridoe, E. K., Weersink, A., & Clark, J. S. (2008). Economic and environmental impacts of introducing land use policies and rotations on Prince Edward Island potato farms. Land Use Policy, 25, 309–319.
John, M., Pannell, D., & Kingwell, R. (2005). Climate change and the economics of farm management in the face of land degradation: Dryland salinity in Western Australia. Canadian Journal of Agricultural Economics, 53, 443–459.
Jones, A., Seville, D., & Meadows, D. (2002). Resource sustainability in commodity systems: The sawmill industry. System Dynamics Review, 18, 171–204.
Kerselaers, E., De Cock, L., Lauwers, L., & van Huylenbroeck, G. (2007). Modelling farm-level economic potential for conversion to organic farming. Agricultural Systems, 94, 671–682.
Kojima, M., Megiddo, N., Noma, T., & Yoshise, A. (2008). A unified approach to interior algorithms for linear complemantarity problems. Berlin: Springer.
Le Page, C., Abrami, G., Barreteau, O., Becu, N., Bommel, P., Botta, A., Dray, A., Monteil, C., & Souchère, V. (2011). Models for sharing representations. In M. Etienne (Ed.), Companion modelling. A participatory approach to support sustainable development (pp. 69–96). Versailles: Edition Quae.
Leigh, A. O., Wilton, J. W., & Jenson, A. E. (1974). Linear-programming model for beef farm planning. Canadian Journal of Animal Science, 54, 261–262.
Lobianco, A., & Esposti, R. (2010). The regional multi-agent simulator (RegMAS): An open-source spatially explicit model to assess the impact of agricultural policies. Computers and Electronics in Agriculture, 72, 14–26.
Mashayekhi, A. N. (1990). Rangelands destruction under population growth: The case of Iran. System Dynamics Review, 6, 167–193.
Mathevet, R. (2003). Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France). Ecological Modelling, 165, 107–126.
Matthews, R. (2006). The people and landscape model (PALM): Towards full integration of human decision-making and biophysical simulation models. Ecological Modelling, 194, 329–343.
Meadows, D. H., Randers, J., & Meadows, D. L. (2004). The limits to growth: The 30-year update. White River Junction: Chelsea Green Publishing.
Milestad, R., Dedieu, B., Darnhofer, I., & Bellon, S. (2012). Farms and farmers facing change – The adaptive approach. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 365–385). Dordrecht: Springer.
Nolan, J., Parker, D., Van Kooten, G. C., & Berger, T. (2009). An overview of computational modelling in agricultural and resource economics. Canadian Journal of Agricultural Economics, 57, 417–429.
Oriade, C. A., & Dillon, C. R. (1997). Developments in biophysical and bioeconomic simulation of agricultural systems: A review. Agricultural Economics, 17, 45–58.
Osgathorpe, L. M., Park, K., Goulson, D., Acs, S., & Hanley, N. (2011). The trade-off between agriculture and biodiversity in marginal areas: Can crofting and bumblebee conservation be reconciled? Ecological Economics, 70, 1162–1169.
Pannell, D. J. (1997). Introduction to practical linear programming. New York: Wiley.
Pannell, D. J., & Nordblom, T. L. (1998). Impacts of risk aversion on whole-farm management in Syria. Australian Journal of Agricultural and Resource Economics, 42, 227–247.
Papajorgji, P. J., & Pardalos, P. M. (Eds.). (2009). Advances in modelling agricultural systems. New York: Springer.
Paris, Q. (1991). An economic interpretation of linear programming. Ames: Iowa State University Press.
Parker, D. C., Berger, T., & Manson, S. M. (2001). Agent-based models of land-use and land-cover change (LUCC Report Series No. 6). Bloomington: Indiana University.
Ramsden, S., Gibbons, J., & Wilson, P. (1999). Impacts of changing relative prices on farm level dairy production in the UK. Agricultural Systems, 62, 201–215.
Rich, K. M. (2008). An interregional system dynamics model of animal disease control: Applications to foot-and-mouth disease in the southern cone of South America. System Dynamics Review, 24, 67–96.
Röling, N. (1997). The soft side of land: Socio-economic sustainability of land use systems. ITC Journal, 3, 248–262.
Rossing, W., Zander, P., Josien, E., Groot, J., Meyer, B., & Knierim, A. (2007). Integrative modelling approaches for analysis of impact of multifunctional agriculture: A review for France, Germany and The Netherlands. Agriculture, Ecosystems & Environment, 120, 41–57.
Saqalli, M., Bielders, C. L., Gerard, B., & Defourny, P. (2010). Simulating rural environmentally and socio-economically constrained multi-activity and multi-decision societies in a low-data context: A challenge through empirical agent-based modelling. Journal of Artificial Societies and Social Simulation, 13, 1. From: http://jasss.soc.surrey.ac.uk/13/2/1.html
Sattler, C. (2008). Ökologische Bewertung und Akzeptanzanalyse pflanzenbaulicher Produktionsverfahren. Ph.D. thesis, Humboldt Universität zu Berlin, Germany.
Sattler, C., Schuler, J., & Zander, P. (2006). Determination of trade-off functions to analyse the provision of agricultural non-commodities. International Journal of Agricultural Resources, Governance & Ecology, 5, 309–325.
Saysel, A. K., & Barlas, Y. (2001). A dynamic model of salinization on irrigated lands. Ecological Modelling, 139, 177–199.
Saysel, A. K., & Barlas, Y. (2006). Model simplification and validation with indirect structure validity tests. System Dynamics Review, 22, 241–262.
Saysel, A. K., Barlas, Y., & Yenigün, O. (2002). Environmental sustainability in an agricultural development project: A system dynamics approach. Journal of Environmental Management, 64, 247–260.
Schiere, J. B., Lyklema, J., Schakel, J., & Rickert, K. G. (1999). Evolution of farming systems and system philosophy. Systems Research and Behavioral Science, 16, 375–390.
Schiere, J. B., Darnhofer, I., & Duru, M. (2012). Dynamics in farming systems: Of changes and choices. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 337–363). Dordrecht: Springer.
Scholl, H. J. (2001). Agent based and system dynamics modelling: A call for cross study and joint research. Presentation at the 34th Hawaii international conference on system sciences, Maui, HI.
Schreinemachers, P., & Berger, T. (2011). An agent-based simulation model of human–environment interactions in agricultural systems. Environmental Modelling & Software, 26, 845–859.
Schuler, J. (2008). An economic analysis of the implementation options of soil conservation policies. Ph.D. thesis, University of Hohenheim, Germany.
Schuler, J., & Sattler, C. (2010). The estimation of agricultural policy effects on soil erosion. An application for the bio-economic model MODAM. Land Use Policy, 27, 61–69.
Sherrington, C., & Moran, D. (2010). Modelling farmer uptake of perennial energy crops in the UK. Energy Policy, 38, 3567–3578.
Shi, T., & Gill, R. (2005). Developing effective policies for the sustainable development of ecological agriculture in China: The case study of Jinshan County with a systems dynamics model. Ecological Economics, 53, 223–246.
Simon, H. (1982). Models of bounded rationality. Cambridge: MIT Press.
Simon, C., & Etienne, M. (2010). A companion modelling approach applied to forest management planning. Environmental Modelling & Software, 25, 1371–1384.
Souchère, V., Millair, L., Echeverria, J., Bousquet, F., Le Page, C., & Etienne, M. (2010). Co-constructing with stakeholders a role-playing game to initiate collective management of erosive runoff risks at the watershed scale. Environmental Modelling & Software, 25, 1359–1370.
Stave, K. A. (2002). Using system dynamics to improve public participation in environmental decisions. System Dynamics Review, 18, 139–167.
Sterman, J. D. (2000). Business dynamics: Systems thinking and modelling for a complex world. Boston: McGraw-Hill.
Stoorvogel, J. (2004). The trade-off analysis model: Integrated bio-physical and economic modelling of agricultural production systems. Agricultural Systems, 80, 43–66.
Stott, A. W., Lloyd, J., Humphry, R. W., & Gunn, G. J. (2003). A linear programming approach to estimate the economic impact of bovine viral diarrhoea (BVD) at the whole-farm level in Scotland. Preventive Veterinary Medicine, 59, 51–66.
Topp, C. F. E., & Mitchell, M. (2003). Forecasting the environmental and socioeconomic consequences of changes in the common agricultural policy. Agricultural Systems, 76, 227–252.
Uthes, S. (2010). Developing a spatially explicit decision support tool for agri-environmental programs. Ph.D. thesis, Humboldt University of Berlin, Germany.
Valeeva, N. I., Huirne, R. B., Meuwissen, M. P., & Lansink, A. G. (2007). Modelling farm-level strategies in the dairy for improving food safety chain. Agricultural Systems, 94, 528–540.
van Calker, K. J., Berentsen, P. B., Giesen, G. W., & Huirne, R. B. (2008). Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach. Ecological Economics, 65, 407–419.
van de Fliert, E., Hermann, S., & Olsson, J. A. (Eds.). (2011). Integrated assessment of agricultural sustainability. Exploring the use of models in stakeholder processes. Oxford: Earthscan.
van den Belt, M. (2004). Mediated modelling: A system dynamics approach to environmental consensus building. Washington, DC: Island Press.
Vayssières, J., Vigne, M., Alary, V., & Lecomte, P. (2011). Integrated participatory modelling of actual farms to support policy making on sustainable intensification. Agricultural Systems, 104, 146–161.
Vennix, J. A. (1996). Group model building: Facilitating team learning using system dynamics. Chichester: Wiley.
Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25, 1268–1281.
Weber, M., & Schwaninger, M. (2002). Transforming an agricultural trade organization: A system dynamics based intervention. System Dynamics Review, 18, 381–401.
Yin, X. Y., & Struik, P. C. (2010). Modelling the crop: From system dynamics to systems biology. Journal of Experimental Botany, 61, 2171–2183.
Zander, P. (2003). Agricultural land use and conservation options – A modelling approach. Ph.D. thesis, Wageningen University, The Netherlands.
Zander, P., & Kächele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 59, 311–325.
Zimmermann, A. (2008). Optimization of sustainable dairy-cow feeding systems with an economic-ecological LP farm model using various optimization processes. Journal of Sustainable Agriculture, 32, 77–94.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Feola, G., Sattler, C., Saysel, A.K. (2012). Simulation models in Farming Systems Research: potential and challenges. In: Darnhofer, I., Gibbon, D., Dedieu, B. (eds) Farming Systems Research into the 21st Century: The New Dynamic. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4503-2_13
Download citation
DOI: https://doi.org/10.1007/978-94-007-4503-2_13
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-4502-5
Online ISBN: 978-94-007-4503-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)