Skip to main content

Microalgae for Bioremediation of Distillery Effluent

  • Chapter
  • First Online:
Farming for Food and Water Security

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 10))

Abstract

Microalgae are single-celled autotrophic photosynthetic microorganisms, and constitute a heterogeneous group of unicellular microorganisms. Microalgae are valuable sources of food and feed products, high-value oils, biofuels, chemicals, medicinal products and pigments. Microalgae are potent candidates for bioremediation of a large number of pollutants. Distillery effluents, also referred to as spentwash/stillage/slop/vinasses, are one of the most environmentally aggressive industrial effluents. Distillery effluents often have low pH, strong odor, dark brown color, and extremely high nutrients content. They often have chemical oxygen demand (COD) ranging from 80,000 to 100,000 mg L−1; biological oxygen demand (BOD) of 40,000–50,000 mg L−1; and nutrients like nitrogen of 1,660–4,200 mg L−1; phosphorus of 225–3,038 mg L−1; and potassium of 9,600–17,475 mg L−1. With the development of economies and resultant growth of distillery industries, large volume of spentwash is produced which is likely to cause extensive soil and water pollution due to the presence of high amount of organic matter and dark brown colored recalcitrant compounds. There have been many isolated studies for treatment of distillery effluents and related compounds using microalgae. This review tries to weave these isolated studies in a string to reflect a clear picture of the utility of microalgae in bioremediation of distillery effluents. In view of the wider applicability of microalgal strains in remediation of domestic wastewaters, inorganic nutrients like nitrogen and phosphorus, heavy metals, pesticides, phenols, aromatic hydrocarbons, textile dyes, and detergents; we reviewed the potentiality of these unicellular microorganisms for bioremediation of distillery effluents.

For treatment of wastewaters native microalgal strains are a favorable alternative to the traditional wastewaters treatment systems. The traditional physico-chemical methods of waste water treatment are costly, energy expensive, environmentally unfriendly, unsustainable, and have tendency to form toxic intermediates. Moreover, the anaerobic degradation of aromatic amino acids by many heterotrophic bacteria and fungi may further aggravate the pollution problem due to further liberation of phenol and cresol. However, biological processes using microorganisms are comparatively less expensive and can lead to almost complete mineralization of the compounds. The environment friendly approach of activated sludge process using consortium of microorganisms is regarded more efficient for mineralization of toxic organic compounds. A dark brown recalcitrant pigment called melanoidin, formed in the molasses as a result of Maillard reaction, can form stable complexes with metal cations. Oscillatoria boryana can utilize melanoidins as a carbon and nitrogen source; and decolorize pure melanoidins by about 75% and crude pigment by 60% in 30 days. A consortium of Oscillatoria, Lyngbya and Synechocystis decolorized melanoidin by 98% by absorption followed subsequently by degradation of the organic compounds. The microalgal strains like Anabaena cylindrica, Phormidium foveolarum, P. valderianum, Synechococcus, Ankistrodesmus braunii and Scenedesmus quadricauda have been reported instrumental in degradation of phenol and its derivatives, whereas the performances of Phormidium ambiguum, Chroococcus minutus, Oscillatoria, and Anabaena azollae were found satisfactory for degradation of lignin. Phormidium ambiguum and Chroococcus minutus were found to reduce lignin by over 73.0% from the pulp and paper mill wastes in 5 days; whereas Phormidium, Oscillatoria, and Anabaena azollae were able to degrade lignin by 89% and hemicellulose by 92% from coir waste.

The ability of microalgae to grow under mixotrophic growth conditions enable them to survive under low light or carbon dioxide shortage and represents an alternative to other biological treatments for remediation of phenol-containing wastewaters. The microalgae carry out ortho-fission of the phenolic substances extracellularly in the dark. This reaction is catalyzed by a protein; however, such transformation is inhibited by heat, proteases and metal ions. Ochromonas danica can enzymatically carry out meta-cleavage of phenol and its methylated homologues and the compounds produced are metabolized as intermediates of the Krebs cycle. Several species of cyanobacteria are also known to possess phenol-degrading enzymes like lignin peroxidase, laccase, polyphenol oxidase, superoxide dismutase, catalase, peroxidase and ascorbate peroxidise. The lignolytic and anti-oxidative enzymatic activities increases in the presence of phenol, if microalgae are subjected to nitrogen limiting condition. Moreover the photosynthetic nature of the microalgae enable them to produce toxic active oxygen species like O2–, OH, and H2O2 which have strong oxidising agent and are involved in degradation of melanoidin. Presence of molecular oxygen is indispensable for enzymatic breakdown of aromatic ring of phenols by microalgae; which involves hydroxylation of the aromatic ring and formation of catechol followed subsequently by oxidation. Moreover, the microalgal growth and the rate of biodegradation can be enhanced under increased light intensities and by addition of carbon dioxide and sodium bicarbonate. The microalgae offers spectacular prospects of their use in bioremediation because of their ubiquitous distribution, cost efficient, central role in nitrogen fixation, turnover of carbon and other nutrient elements, almost complete mineralization of compounds, and ability to scavenge nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COD:

Chemical oxygen demand

BOD:

Biochemical oxygen demand

NAD:

Nicotinamide adenine dinucleotide

NADH2 :

Reduced nicotinamide adenine dinucleotide

LC:

Lethal concentration

References

  • Abdel Hameed MS (2002) Effect of Immobilization on growth and photosynthesis of the green alga Chlorella vulgaris and its efficiency in heavy metals removal. Bull Fac Sci Assiut Univ 31(1-D):233–240

    Google Scholar 

  • Abdel Hameed MS, Hammouda O (2007) Review: biotechnological potential uses of immobilized algae. Int J Agric Biol 9(1):183–192

    CAS  Google Scholar 

  • Agarwal R, Lata S, Gupta M, Singh P (2010) Removal of melanoidin present in distillery effluent as a major colorant: a review. J Environ Biol 31:521–528

    PubMed  CAS  Google Scholar 

  • Agrawal CS, Pandey GS (1994) Soil pollution by spentwash discharge: depletion of manganese (II) and impairment of its oxidation. J Environ Biol 15:49–53

    CAS  Google Scholar 

  • Akarsubasi AT, Ince O, Oz NA, Kirdar B, Ince BK (2006) Evaluation of performance, acetoclastic methanogenic activity and archaeal composition of full-scale UASB reactors treating alcohol distillery wastewaters. Process Biochem 41:28–35

    CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91(3):533–540

    PubMed  CAS  Google Scholar 

  • Ali DM, Suresh A, Praveen Kumar R, Gunasekaran M, Thajuddin N (2011) Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. Afr J Basic Appl Sci 3(1):9–13

    Google Scholar 

  • Anbuselvi S, Jeyanthi R (2009) A comparative study on the biodegradation of coir waste by three different species of marine cyanobacteria. J Appl Sci Res 5:2369–2374

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Bayly RC, Barbour MG (1984) The degradation of aromatic compounds by the meta and gentisate pathways. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker Incorporation, New York, pp 253–294

    Google Scholar 

  • Beltran FJ, Garcia-Araya JF, Alvarez PM (1999) Wine distillery wastewater degradation 2. Improvement of aerobic biodegradation by means of an integrated chemical (ozone)-biological treatment. J Agric Food Chem 47:3919–3924

    PubMed  CAS  Google Scholar 

  • Beltran FJ, Alvarez PM, Rodriguez EM, Garcia-Araya JF, Rivas J (2001) Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation. Biotechnol Prog 17:462–467

    PubMed  CAS  Google Scholar 

  • Bharati SG, Salanki AS, Taranath TC, Acharyulu MVRN (1992) Role of cyanobacteria in the removal of lignin from the paper mill wastewaters. Bull Environ Contam Toxicol 49:738–742

    PubMed  CAS  Google Scholar 

  • Borrero MAV, Pereira JTV, Miranda EE (2003) An environmental management method for sugar cane alcohol production in Brazil. Biomass Bioenerg 25:287–299

    Google Scholar 

  • Cain RB (1994) Biodegradation of detergent. Curr Opin Biotechnol 5:266–274

    CAS  Google Scholar 

  • Cammerer B, Jalyschkov V, Kroh LW (2002) Carbohydrate structures as part of the melanoidins skeleton. Int Congr Ser 1245:269–273

    Google Scholar 

  • Campbell WS, Laudenbach DE (1995) Characterization of four superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol 177:964–972

    PubMed  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Cerniglia CE, Morgan JC, Gibson DT (1979) Bacterial and fungal oxidation of dibenzofuran. Biochem J 180:175–185

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, Freeman JP, Althaus JR (1984) Biotransformation and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. In: Liu D, Dutka BJ (eds) Toxicity screening procedures using bacterial systems. Marcel Dekker Incorporation, New York, pp 381–394

    Google Scholar 

  • Chandra R, Bharagava N, Rai V (2008) Melanoidins as major colorant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99(11):4648–4660

    PubMed  CAS  Google Scholar 

  • Contreras EM, Albertario ME, Bertola NC, Zaritzky NE (2008) Modelling phenol biodegradation by activated sludges evaluated through respirometric techniques. J Hazard Mat 158:366–374

    CAS  Google Scholar 

  • CPCB (2003) Charter on corporate responsibility for environmental protection. Workshop organized at Mumbai by MPCB on 01 Mar 2003. http://cpcb.nic.in//Charter/charter5.htm

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    PubMed  CAS  Google Scholar 

  • de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989

    PubMed  CAS  Google Scholar 

  • Della Greca M, Monaco P, Pollio A, Previtera L (1992) Structure activity relationships of phenylpropanoids as growth inhibitors of the green alga Selenastrum capricornutum. Phytochemistry 31:4119–4123

    CAS  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by fresh water algae. Plant Sci Lett 8:213–216

    CAS  Google Scholar 

  • EPA (1979) The Carcinogen Assessment Group’s preliminary risk assessment on cresols: type 1 – air program. Prepared by the Office of Health and Environment Assessment for the Office of Air Quality Planning and Standards, Washington, DC

    Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317

    PubMed  CAS  Google Scholar 

  • FitzGibbon FJ, Singh D, Mc Mullan G, Marchant R (1998) The effect of phenolics acids and molasses spentwash concentration on distillery wastewater remediation by fungi. Process Biochem 33:799–803

    CAS  Google Scholar 

  • Friedrich J (2004) Bioconversion of distillery waste. In: Arora DK (ed) Fungal biotechnology in agriculture, food and environmental applications. Marcel Dekker Incorporation, New York, pp 431–442

    Google Scholar 

  • Godshall MA (1999) Removal of colorants and polysaccharides and the quality of white sugar. In: Proceedings of sixth international symposium organized by association Andrew van Hook (AvH), Reims pp 28–35

    Google Scholar 

  • Gonzalez LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Columbian agro-industrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    CAS  Google Scholar 

  • Gonzalez T, Terron MC, Yague S, Junca H, Carbajo JM, Zapico EJ, Silva R, Arana A, Tellez A, Gonzalez AE (2008) Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62. Res Microbiol 159:103–109

    PubMed  CAS  Google Scholar 

  • Hallmann A (2007) Algal transgenics and biotechnology.Global Science Books. Transgenic Plant J 1:81–98

    Google Scholar 

  • Hayase F, Kim SB, Kato H (1984) Decolorisation and degradation products of the melanoidins by hydrogen peroxide. Agric Biol Chem 48:2711–2717

    CAS  Google Scholar 

  • Heider J, Fuchs G (1996) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Google Scholar 

  • Hensyl WR (1989) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Herrero A, Flores E (2008) The cyanobacteria: molecular biology, genomics and evolution, 1st edn. Caister Academic Press, Norfolk. ISBN 978-1-190445515-8

    Google Scholar 

  • Hiramoto K, Nasuhara A, Michikoshi K, Kato T, Kikugawa K (1997) DNA strand-breaking activity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat Res 395:47–56

    PubMed  CAS  Google Scholar 

  • Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95:200–203

    PubMed  CAS  Google Scholar 

  • Ibraheem IBM (2010) Biodegradability of hydrocarbons by cyanobacteria. J Phycol 46:818–824

    CAS  Google Scholar 

  • Ikan R, Ioselis P, Rubinsztain Y, Aizenshtat Z, Miloslavsky I, Yariv S, Pugmire R, Anderson LL, WoolfendenWR KIR, DorseyT PKE, Boon JJ, de Leeuw JW, Ishiwatari R, Morinaga S, Yamamoto S, Macihara T, Muller-Vonmoos M, Rub A (1992) Chemical, isotopic, spectroscopic and geochemical aspects of natural and synthetic humic substances. Sci Total Environ 117–118:1–12

    Google Scholar 

  • Ishihara K, Nakajima N (2003) Improvement of marine environmental pollution using eco-system: decomposition and recovery of endocrine disrupting chemicals by marine phyto- and zooplanktons. J Mol Catal B 23:419–424

    CAS  Google Scholar 

  • Jain N, Minocha AK, Verma CL (2002) Degradation of pre-digested distillery effluent by isolated bacterial strains. Indian J Exp Bot 40:101–105

    Google Scholar 

  • Jingi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Google Scholar 

  • Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium; interpretation, integration and comparison with general circulation model control-run temperatures. The Holocene 8:455–471

    Google Scholar 

  • Kafilzadeh F, Farhangdoost MS, Tahery Y (2010) Isolation and identification of phenol degrading bacteria from Lake Parishan and their growth kinetic assay. Afr J Biotechnol 9(40):6721–6726

    CAS  Google Scholar 

  • Kalavathi DF, Uma L, Subramanian G (2001) Degradation and metabolization of the pigment- melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol 29:246–250. doi:10.1016/S0141-0229(01)00383-0

    Google Scholar 

  • Kannabiran B, Pragasam A (1993) Effect of distillery effluent on seed germination, seedling growth and pigment content of Vigna mungo (L.) Hepper (CVT9). Geobios 20:108–112

    Google Scholar 

  • Kaushik A, Nisha R, Jagjeeta K, Kaushik CP (2005) Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bio amendments. Bioresour Technol 96:1860–1866

    PubMed  CAS  Google Scholar 

  • Koch R (1989) Umweltchemikalien. VCH, Weinheim

    Google Scholar 

  • Kort MJ (1979) Color in the sugar industry. In: de Birch GG, Paker KJ (eds) Sugar: science and technology. Applied Science, London, pp 97–130

    Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fibre cell walls. Adv Biochem Eng Biotechnol 57:45–125

    PubMed  CAS  Google Scholar 

  • Kumar P, Chandra R (2006) Decolorisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresour Technol 97:2096–2102

    PubMed  CAS  Google Scholar 

  • Kuritz T (1999) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol Symp Suppl 85:186–195

    Google Scholar 

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. Appl Environ Microbiol 73(1):243–249

    PubMed  CAS  Google Scholar 

  • Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wotjas M, Matus A, Hofritchter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    PubMed  CAS  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62(2–3):135–146. doi:10.1016/j.physletb.2003.10.071

    CAS  Google Scholar 

  • Lima S, Castro P, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Physiol 15:137–142

    CAS  Google Scholar 

  • Lima SAC, Filomena M, Raposo J, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102

    PubMed  CAS  Google Scholar 

  • Luther M (1990) Degradation of different substituted aromatic compounds as nutrient sources by the green alga Scenedesmus obliquus. Dechema Biotechnol Conferences 4:613–615

    CAS  Google Scholar 

  • Luther M, Soeder CJ (1987) Some naphthalene sulphonic acids as sulphur sources for the green microalga, Scenedesmus obliquus. Chemosphere 16:1565–1578

    CAS  Google Scholar 

  • Mahimairaja S, Bolan NS (2004) Problems and prospects of agricultural use of distillery spentwash in India. In: SuperSoil, 3rd Australian New Zealand soils conference. 5–9 Dec 2004, University of Sydney, Sydney

    Google Scholar 

  • Malliga P, Uma L, Subramanian G (1996) Lignolytic activity of the cyanobacterium Anabaena azollae ML2 and the value of coir waste as a carrier for BGA biofertilizer. Microbios 86:175–183

    CAS  Google Scholar 

  • Manisankar P, Rani C, Vishwanathan S (2004) Effect of halides in the electrochemical treatment of distillery effluent. Chemosphere 57:961–966

    PubMed  CAS  Google Scholar 

  • Mansy AE, El-Bestawy E (2002) Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World J Microbiol Biotechnol 18:125–131

    CAS  Google Scholar 

  • Martins SIFS, van Boekel MAJS (2004) A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem 90(1–2):257–269

    Google Scholar 

  • Mc Hugh DJ (2003) A guide to the seaweed industry, vol 441, FAO fisheries technical papers. FAO, Rome, pp 101–115

    Google Scholar 

  • Michelou VK, Cottrell MT, Kirchman DL (2007) Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl Environ Microbiol 73(17):5539–5546

    PubMed  CAS  Google Scholar 

  • Mohana S, Acharya KB, Madamwar D (2009) Treatment technologies and potential applications. J Hazard Mater 163:12–25

    PubMed  CAS  Google Scholar 

  • Morales FJ, Jimenez-Perez S (2001) Free radical scavenging capacity of Maillard reaction products as related to color and fluorescence. Food Chem 72:119–125

    CAS  Google Scholar 

  • Murugan K, Al-Sohaibani SA (2010) Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin Acylhydrolase (E.C.31120) enzyme of mango industry solid waste isolate Aspergillus candidus MTTC 9628. Res J Microbiol 5:262–271

    CAS  Google Scholar 

  • Nakai S, Yutaca I, Masaaki H (2001) Algal growth inhibition effects and inducement modes by plant-production phenols. Water Res 35:1855–1859

    PubMed  CAS  Google Scholar 

  • Nandy T, Shastry S, Kaul SN (2002) Wastewater management in cane molasses distillery involving bioresource recovery. J Environ Manage 65(1):25–38

    PubMed  Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58:1360–1363

    PubMed  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    PubMed  CAS  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algal symbiosis in oxidation ponds. III. Photosynthetic oxygenation. Sew Ind Wastes 25:692–705

    CAS  Google Scholar 

  • Palanisami S, Saha SK, Uma L (2010) Laccase and polyphenol oxidase activities of marine cyanobacteria: a study with Poly R-478 decolorization. World J Microbiol Biotechnol 26:63–69

    CAS  Google Scholar 

  • Pant D, Adholeya A (2007) Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol 96:2321–2334. doi:10.1016/j.biortech.2006.09.027

    Google Scholar 

  • Pant D, Reddy UG, Adholeya A (2006) Cultivation of oyster mushrooms on wheat straw and bagasse substrate amended with distillery effluent. World J Microbiol Biotechnol 22:267–275

    Google Scholar 

  • Papazi A, Kotzabasis K (2007) Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds - exogenously supplied energy and carbon sources adjust the level of biodegradation. J Biotechnol 129:706–716

    PubMed  CAS  Google Scholar 

  • Papazi A, Kotzabasis K (2008) Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxic phenolic compounds. J Biotechnol 135:366–373. doi:10.1016/j.jbiotec.2008.05.009

    PubMed  CAS  Google Scholar 

  • Parikh A, Madamwar D (2005) Textile dye decolorization using cyanobacteria. Biotechnol Lett 27:323–326

    PubMed  CAS  Google Scholar 

  • Patel A, Pawar R, Mishra S, Tewari A (2001) Exploitation of marine cyanobacteria for removal of color from distillery effluent. Indian J Environ Prot 21(12):1118–1121

    CAS  Google Scholar 

  • Pathak H, Joshi HC, Chaudhary A, Kalra N, Dwivedi MK (1999) Soil amendment with distillery effluent for wheat and rice cultivation. Water Air Soil Pollut 113:133–140

    CAS  Google Scholar 

  • Patil NB, Kapadnis BP (1995) Decolorisation of melanoidin pigment from distillery spentwash. Indian J Environ Health 37:84–87

    CAS  Google Scholar 

  • Patil PU, Kapadnis BP, Dhamankar VS (2003) Decolorisation of synthetic melanoidin and biogas effluent by immobilized fungal isolate of Aspergillus niger UM2. All India Distiller’s Association (AIDA) newsletter, pp 53–56

    Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    PubMed  CAS  Google Scholar 

  • Petroutsos D, Katapodis P, Christakopoulos P, Kekos D (2007) Removal of p -chlorophenol by the marine microalga Tetraselmis marina. J Appl Phycol 19:485–490. doi:10.1007/s10811-007-9160-0

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051. doi:10.1023/A:1021367304315

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659. doi:10.1023/A:1025667429222

    PubMed  CAS  Google Scholar 

  • Plavsic M, Cosovic B, Lee C (2006) Copper complexing properties of melanoidins and marine humic material. Sci Total Environ 366:310–319

    PubMed  CAS  Google Scholar 

  • Podda F, Zuddas P, Minacci A, Pepi M, Baldi F (2000) Heavy metal co-precipitation with hydrozincite [Zn5(CO3)2(OH)6] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 66(11):5092–5098

    PubMed  CAS  Google Scholar 

  • Priya B, Sivaprasanth RK, Jensi VD, Uma L, Subramanian G, Prabaharan D (2010) Characterization of manganese superoxide dismutase from a marine cyanobacterium Leptolyngbya valderiana BDU20041. Saline Syst 6:6. http://www.salinesystems.org/content/6/1/6

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    PubMed  CAS  Google Scholar 

  • Radwan SS, Al-Hasan H (2000) Oil pollution and cyanobacteria. In: Potts M, Whitton BA (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht/London/Boston, pp 307–316

    Google Scholar 

  • Rajani Rani M, Sreekanth D, Himabindu V (2011) Degradation of mixture of phenolic compounds by activated sludge processes using mixed consortia. Int J Energy Environ 2(1):151–160

    Google Scholar 

  • Ramakritinan CM, Kumaraguru AK, Balasubramanian MP (2005) Impact of distillery effluent on carbohydrate metabolism of freshwater fish, Cyprinus carpio. Ecotoxicology 14:693–707

    PubMed  CAS  Google Scholar 

  • Ramana S, Biswas AK, Singh AB (2002) Effect of distillery effluent on some physiological aspects of maize. Bioresour Technol 84:295–297

    PubMed  CAS  Google Scholar 

  • Robinson T, Mc Mullan G, Marchant R, Nigan P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb ES, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    PubMed  CAS  Google Scholar 

  • Saha SK, Swaminathan P, Raghavan C, Uma L, Subramanian G (2010) Ligninolytic and antioxidative enzymes of a marine cyanobacterium Oscillatoria willei BDU 130511 during Poly R-478 decolorization. Bioresour Technol 101:3076–3084. doi:10.1016/j.jbiortech.2009.12.075

    PubMed  CAS  Google Scholar 

  • Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutat Res 197:289–302

    Google Scholar 

  • Scragg AH (2006) The effect of phenol on the growth Chlorella vulgaris and Chlorella VT-1. Enzyme Microb Technol 39:796–799. doi:10.1016/j.enzmictec.2005. 12.018 DOI:dx.doi.org

    CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenolic by Ochromonas danica. Appl Environ Microbiol 62:1265–1273

    PubMed  CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (2000) Record of the cyanobacteria present in the Hamisar pond of Bhuj, India. Acta Bot Mala 25:175–180

    Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    CAS  Google Scholar 

  • Shigeoka T, Sato Y, Tadeka Y (1988) Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ Toxicol Chem 7:847–854

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2006) Sewage effluent: a potential nutrient source for microalgae. Proc Indian Natl Sci Acad 72:113–120

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Indian J Biotechnol 6:52–56

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agron Sustain Dev 31:605–629. doi:10.1007/s13593-011-0018-0

    CAS  Google Scholar 

  • Sorkhoh N, Al-Hasan R, Radwan S, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109–109

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    PubMed  CAS  Google Scholar 

  • Sreekanth D, Sivaramakrishna D (2009) Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors. J Hazard Mater 164:1532–1539

    PubMed  CAS  Google Scholar 

  • Srivastava S, Radha J (2010) Effect of distillery spentwash on cytomorphological behaviour of sugarcane settlings. J Environ Biol 31(5):809–812

    CAS  Google Scholar 

  • Stewart WDP, Haystead A, Dharmawardene MWN (1975) Nitrogen assimilation and metabolism in blue-green algae. In: Stewart WDP (ed) Nitrogen fixation by free-living microorganisms. Cambridge University Press, Cambridge, pp 129–158

    Google Scholar 

  • Tabei Y, Okada K, Tsuzuki M (2007) SII1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 355(4):1045–1050

    PubMed  CAS  Google Scholar 

  • Talley JW, Sleeper PM (1997) Roadblock to the implementation of bio-treatment strategies. Ann NY Acad Sci 829:16–29

    PubMed  CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84(1):1–5. doi:10.1016/S0960-8524(02)00029-9

    PubMed  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S (2003) Bioremediation potential of hydrocarbonoclastic bacteria in Cuddalore harbour waters (India). Res J Chem Environ 7:17–22

    CAS  Google Scholar 

  • Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68:425–431

    CAS  Google Scholar 

  • Travieso L, Benitez F, Sanchez E, Borja R, Leon M, Raposo F, Rincon B (2008) Performance of laboratory-scale microalgae pond for secondary treatment of distillery wastewater. Chem Biochem Eng Q 22(4):467–473

    CAS  Google Scholar 

  • Tsuji N, Hirooka T, Nagase H, Hirata K, Miyamoto K (2003) Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. Vacuolata. Biotechnol Lett 25:241–244

    PubMed  CAS  Google Scholar 

  • Ugurlu M, Kula I (2007) Decolorization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment. Environ Sci Pollut 5:319–325

    Google Scholar 

  • Valderrama LT, Del campo CM, Rodriguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res 36:4185–4192

    PubMed  CAS  Google Scholar 

  • Wilkie AC, Riedesel KJ, Ownes JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63–102

    CAS  Google Scholar 

  • Wurster M, Mundt S, Hammer E, Schauer F, Lindequist U (2003) Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J Appl Phycol 15:171–176

    CAS  Google Scholar 

  • Zubkov MV, Mary I, Woodward EMS, Warwick PE, Fuchs BM, Scanlan DJ, Burkill PH (2007) Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environ Microbiol 9:2079–2089

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the facilities provided by the Department of Microbiology, C.P. College of Agriculture (S.D.A.U.) and financial support provided by the Institute (S.D.A.U.) under the scheme - Strengthening of the existing Department of Microbiology (B.H.11867) for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirbhay K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, N.K., Patel, D.B. (2012). Microalgae for Bioremediation of Distillery Effluent. In: Lichtfouse, E. (eds) Farming for Food and Water Security. Sustainable Agriculture Reviews, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4500-1_4

Download citation

Publish with us

Policies and ethics