Pesticides and Sustainable Agriculture

  • Patrick DroguiEmail author
  • Pierre Lafrance
Part of the Sustainable Agriculture Reviews book series (SARV, volume 10)


The global perspective of this review is to present, in a particular way, many dimensions related to the use of pesticides and sustainable development in agriculture. Worldwide increasing use of pesticides induces high and very variable environmental pressures depending on the countries, their major crops and pesticide needs and the types of management of cropping systems. As an example, in 2003, the global market for pesticides by worldwide regions was the following: European Union: 28%; North America: 25%; South America: 18%; Asia and Africa: 30%. Between 1993 and 1998, the growth rate for synthetic chemical pesticides was: Latin America: 5.4%; Africa/Middle East: 5.1%; Western Europe: 4.6%; Eastern Europe: 4.4%; Asia/Oceania: 4.4%; North America: 4.0%. Mitigation procedures to minimize the environmental pressures due to the growing use of pesticides must use one or many elements of crop management strategies. These management strategies must be adapted to the specific combination of crops and pesticides. In 1997, at a global scale, the sales, in percentage of the total markets in billions of dollars, of some of the major crops were: fruits/nuts/vegetables: 21.0%; home/garden/ornamentals: 17%; cereals: 12.9%; maize: 8.1%; rice: 8.1%. At the same time, the sales for the main pesticides chemical groups were: herbicides: 47.6%; insecticides: 29.4%; fungicides: 17.5%. The reduction of pesticide losses in surface water is essential to limit toxicological concerns and the adverse effects of pesticides on natural organisms and human health. Also, the development and application of new biopesticides and transgenic crops, which could be tolerant to herbicides and killing weeds or resistant to insects, should be considered in sustainable development. The market for various biopesticides and transgenic crops was expected to expand by over 20% between 2000 and 2005. Despite their interest, they may be a source of unplanned social and environmental issues related to the ecology of crops, insect or plant resistance, and use of more efficient and toxic chemical pesticides. Water and wastewater treatment plants may also be used to alleviate the negative impacts, mainly on human health, of water contaminated by pesticides.

We reviewed four of the major goals linked to pesticides and sustainable development in agriculture. These goals are (i) Production, markets and worldwide uses of pesticides, including biopesticides and genetically modified crops, (ii) Rejection of pesticides in the environment and mitigation procedures, (iii) Impacts of pesticides in the environment and human health concerns, and (iv) Management and treatment of water contaminated by pesticides. The major advances and trends for these goals are the following. Production and use of pesticides will increase with the worldwide demographic evolution. Establishing a long-term tendency of the needs for synthetic chemical pesticides at a global scale may be hazardous, but by using demographic tendency, it is expected that in 2050 the world will need 70% more food than in 2010, especially in Africa, India and Asia. A significant growth of chemical pesticides use is unavoidable. The last 20-year period was characterized by the use of various types of biopesticides and genetically modified crops, namely plant-pesticides resistance to insects, i.e. Bacillus thuringiensis pesticidal protein or Bt crops, and herbicide-tolerant plants. This was a pivotal step in the development of modern agriculture and it induces a tremendous change in the use of pesticides by converting growers to intensive production of major crops. The next 20 years are expected to see a substantial increase in the use of genetically modified plants. This should contribute to the implementation of integrated pest management systems such as no-tillage practices in order to minimize the contamination of water by pesticides. Genetically modified plants can actually reduce some of the harmful side effects of insecticides. However, actual observations made until 2010 suggest that the rapid diffusion of genetically modified Bacillus thuringiensis-based crops will lead to pest resistance. A similar problem occurs with some herbicide-tolerant crops, i.e. for glyphosate. The spreading of these crops could result in the transfer of their genetic qualities to weeds, creating new generations of weed-resistance to herbicides and thus reduce crop yields. These paradoxes will possibly change the market of pesticides as well as the contamination of waters. Adapted management approaches will be needed in order to preserve the soil quality, integrity of eco-agrosystems and human health. Management and mitigation strategies to minimize pesticide losses in the environment will have to be more efficient in all countries no matter their development status. Human health, much rarely addressed, would probably be recognized as a key component in sustainable development. Efficient treatments are needed to remove pesticides from waters. Conventional methods such as chlorination have shown inefficiency to fully oxidize pesticides. Alternative methods such as the combination of ozone and hydrogen peroxide are more reliable to eliminate pesticides. The use of powdered activated carbon can be efficient for punctual contamination of raw water. The integration of a double layer filtration unit, such as granular activated carbon and sand filtration can constitute an interesting alternative method to remove pesticides in existing drinking water treatment plants. Advanced electrolytic-oxidation techniques are promising treatments to remove pesticides from waters.


Pesticides Production Agriculture, Management Control Heath Impact Contamination Treatment Transgenic plants • Chlorination • Ozonation • Advanced Oxidation Process • Membrane filtration 


  1. Agbekodo KM, Legube B, Dard S (1996) Atrazine and simazine removal mechanisms by nanofiltration: Influence of natural organic matter concentration. Water Res 30(11):2535–2542Google Scholar
  2. Aguiar A, Carbonnière F, Paillard H, Legube B (1993) Oxydation des pesticides et coagulation des substances humiques par le peroxyde d’hydrogène à faibles doses et le fer ferreux. Water Supply 11:129–138Google Scholar
  3. Aspelin AL, Grube AH (1999) Pesticide industry sales and usage. 733-R-99-001. US Environmental Protection Agency, Office of Pesticide Programs, Washington, DCGoogle Scholar
  4. Barreiro JC, Capelato MD, Martin-Neto L, Hansen HCB (2007) Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Res 41:55–62Google Scholar
  5. Berryman D, Giroux I (1994) La contamination des cours d’eaux par les pesticides dans les régions de cultures intensives de maïs au Québec, Campagne d’échantillonnage de 1992 et 1993. Ministère de l’Environnement du Québec, Direction des Écosystèmes Aquatiques, Envirodoq EN940594, report no. PES-4, Québec, 134 ppGoogle Scholar
  6. Board on Agriculture and Natural Resources (BANR) (2000) Genetically modified pest-protected plants: science and regulation. Committee on Genetically Modified Pest-Protected Plants, National Research Council, National Academy Press, Washington, DC, 292 pGoogle Scholar
  7. Board on Agriculture and Natural Resources (BANR) (2010) Toward sustainable agricultural systems in the 21st century. Committee on Twenty-First Century Systems Agriculture, Division on Earth and Life Studies, National Research Council, National Academy Press, Washington, DC, 598 pGoogle Scholar
  8. Caron E, Lafrance P, Duchemin M (2007) Quantification des pertes d’herbicides par ruissellement de surface et par infiltration dans des dispositifs tampon: enherbés et enherbés+arborés. In: Oturan M, Mouchel J-M (eds) Pesticides: impacts environnementaux, gestion et traitement. Presses de l’École Natioale de Ponts et Chaussées, Paris, pp 153–163Google Scholar
  9. Caron E, Lafrance P, Auclair JC, Duchemin M (2010) Impact of grass and grass of polar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots. J Envion Qual 39(2):617–629CrossRefGoogle Scholar
  10. Chromostat N, De Laat J, Doré M, Suty H, Pouillot M (1993) Étude de la dégradation de ­triazine par O3/H2O2 et O3. Cinétique et sous-produits de dégradation. Water Supply 11:149–157Google Scholar
  11. Commission of Life Sciences (2000) The future role of pesticides in US agriculture. Committee on the future role of pesticides in US agriculture, Board on agriculture and natural resources and Board on environmental studies and toxicology, National Research Council, National Academy Press, Washington, DC, 332 pGoogle Scholar
  12. Doré M (1989) Chimie des oxydants et traitement des eaux. Technique et documentation−Lavoisier, Paris, p 505. ISBN 2852065622Google Scholar
  13. Drogui P, Blais JF, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent Patents Eng 1(3):257–272CrossRefGoogle Scholar
  14. Dymond M, Hurr K (2010) The global status of commercialised genetically modified plants – 1 July 2008 to 31 December 2009. Plant Imports, MAF and Biosecurity, New Zealand, p 35Google Scholar
  15. Environment Canada (2001) Protocols for the derivation of water quality guidelines, Canadian environmental quality guidelines. Retrieved from
  16. Environmental Protection agency (EPA) (2000) Drinking water standards and health advisories, Office of Water 4304. EPA 822-B-00-001, U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  17. European Union (1997) Common position (EC) 12767/97. Adopted by the council on 16 December 1997 with a view to the adoption of council directive on the quality of water intended for human consumption. Interinstitutional file 95/0010 (SYN)Google Scholar
  18. Fernandez-Cornejo J, Just RE (2007) Researchability of modern agricultural input markets and growing concentration. Am J Agric Econ 89(5):1269–1275, American Agricultural Economics AssociationGoogle Scholar
  19. Flury M (1996) Experimental evidence of transport of pesticides through fields soils – a review. J Environ Qual 25:25–45CrossRefGoogle Scholar
  20. Galey C, PaSlawski D (1993) Élimination des micropolluants par l’ozone couplé avec le peroxyde d’hydrogène dans le traitement de potabilisation des eaux. Eau Ind Nuisances 161:46–49Google Scholar
  21. Gaynor JD, McTavish DC, Findlay WI (1995) Atrazine and metolachlor loss in surface and subsurface runoff as affected by cultural practices. J Environ Qual 24:246–256CrossRefGoogle Scholar
  22. Giroux I (1998) Impact de l’utilisation des pesticides sur la qualité de l’eau des bassins versants des rivières Yamaska, L’Assomption, Chaudière et Boyer, Ministère de l’Environnement et de la Faune du Québec, Direction des Écosystèmes Aquatiques, Québec, 48 pGoogle Scholar
  23. Gorse I, Dion S (2010) Bilan des ventes de pesticides au Québec pour l’année 2003. Ministère du Développement durable, de l’Environnement et des Parcs (MDDEP), Gouvernement du Québec, ISBN: 978-2-550-58570-1, 81 p. Available from
  24. Hameed BH, Salman JM, Ahmad AL (2009) Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater 163:121–126PubMedCrossRefGoogle Scholar
  25. Hua W, Bennett ER, Letcher RJ (2006) Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Res 40:2259–2266PubMedCrossRefGoogle Scholar
  26. Huston PJ, Pignatello JJ (1999) Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res 33:1238–1246CrossRefGoogle Scholar
  27. Ivancev-Tumbas I, Hobby R (2010) Removal of organic xenobiotics by combined out/in ultrafiltration and powdered activated carbon adsorption. Desalination 255:124–128CrossRefGoogle Scholar
  28. Jusoh A, Hartini WJH, Nora’aini A, Endut A (2011) Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour Technol. doi: 10.1016/j.biortech.2010.12.074
  29. Khoobdel M, Shayeghi M, Golsorkhi S, Abtahi M, Vatandoost H, Zeraatii H, Bazrafkan S (2010) Effectiveness of ultrasound and ultraviolet irradiation on degradation of carbaryl from aqueous solutions. Iran J Arthropod-Borne Dis 4(1):47–53PubMedGoogle Scholar
  30. Kiely T, Donaldson D, Grube A (2004) Pesticides industry sales and usage: 2000 and 2001 market estimates. Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides, and Toxic Substances, U.S. Environmental Protection Agency (EPA), Washington, DC, p 33Google Scholar
  31. Knappe DRU, Snoeyink VL, Roche P, Prados MJ, Bourbigot MM (1997) The effect of preloading on rapid small-scale column test predictions of atrazine removal by GAC adsorbers. Water Res 31(11):2899–2909CrossRefGoogle Scholar
  32. Kouras A, Zouboulis A, Samara C, Kouimtzis T (1995) Removal of pesticides from surface waters by combined physicochemical processes. Part I: Dodine. Chemosphere 30(12):2307–2315CrossRefGoogle Scholar
  33. Kouras A, Zouboulis A, Samara C, Kouimtzis T (1998) Removal of pesticides from aqueous solutions by combined physicochemical processes – The behavior of lindane. Environ Poll 103:193–202Google Scholar
  34. Lafrance P, Banton O, Bernard F. inc. (1993–1996) Évaluation environnementale des pratiques culturales sur maïs pour la réduction des pertes d’herbicides, Rapport scientifique No. 390, Institut National de la Recherche Scientifique, INRS-Eau, Université du Québec, Québec, 919 pGoogle Scholar
  35. Lafrance P, Banton O, Gagné P (1997) Exportation saisonnière d’herbicides vers les cours d’eau mesurée sur six champs agricoles sous quelques pratiques culturales du maïs (Basses-Terres du Saint-Laurent). Rev Sci Eau 4:439–459Google Scholar
  36. Lafrance P, Guibaud G, Bernard C (2001) Rendement de zones tampon herbacées pour limiter les pertes d’herbicides en phase dissoute par ruisellement de surface. In: Proceedings of the 30e Congrès du Groupe Français des Pesticides, Presses de l’Université de Reims Champagne-Ardenne, Rheims, pp 408–417Google Scholar
  37. Lebel J (2003) La Santé – Une approche écosystemique. Centre de recherche pour le développement international (CRDI), Ottawa, Canada, 84 pGoogle Scholar
  38. Lee SJ, Choo KH, Lee CH (2000) Conjunctive use of ultrafiltration with powdered activated carbon adsorption for removal of synthetic and natural organic matter. J Ind Eng Chem 6(6):357–364Google Scholar
  39. Matsui Y, Knappe DRU, Takagi R (2002) Pesticide adsorption by granular activated carbon adsorbers. 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves. Environ Sci Technol 36:3432–3438PubMedCrossRefGoogle Scholar
  40. Ministry of Health NZ (2000) Drinking-water standards for New Zealand, Ministry of Health, New Zealand. Available from
  41. Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. MRS Bull 26(11):890–894CrossRefGoogle Scholar
  42. Nélieu S, Kerhoas L, Einhorn J (2000) Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water. Environ Sci Technol 34(3):430–437CrossRefGoogle Scholar
  43. Ormad MP, Miguel N, Claver A, Matesanz JM, Ovelleiro JL (2008) Pesticides removal in the process of drinking water production. Chemosphere 71(1):97–106PubMedCrossRefGoogle Scholar
  44. Paillard H (1994) Étude de la minéralisation de la matière organique dissoute en milieu aqueux dilué par ozonation, oxydation avancée O3/H2O2 et ozonation catalytique hétérogène. Thèse de Doctorat, de l’université de Poitiers, Poitiers, 224 pGoogle Scholar
  45. Parsons S (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, Alliance House (Ed.), London, p 356Google Scholar
  46. Reichenberger S, Bach M, Skitschak A, Frede HD (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness: a review. Sci Total Environ 384:1–35PubMedCrossRefGoogle Scholar
  47. Rousseau AN, Lafrance P, Lavigne MP, Savary S, Konan B, Quilbé R, Amrani M, Jiapizan P (2011) A hydrological modelling framework for defining watershed-scale achievable performance standards of pesticides beneficial management practices. J Environ Qual. doi: 10.2134/jeq2010.0281
  48. Sarkar B, Venkateswralu N, Nageswara R, Bhattacharjee C, Kale V (2007) Treatment of pesticide contaminated surface water for production of potable water by a coagulation–adsorption–nanofiltration approach. Desalination 212(1–3):129–140CrossRefGoogle Scholar
  49. Sheoran M (2008) Advanced oxidation processes for the degradation of pesticides. M.Tech thesis, Environmental Science & Technology Department. Department of Biotechnology & Environmental Sciences, Thapar University, Patiala. Available from
  50. Siddiqui MS, Amy GL, Murphy BD (1997) Ozone enhanced removal of natural organic matter from drinking water sources. Wat Res 31:3098–3106Google Scholar
  51. Sotelo JL, Ovejero G, Delgado JA, Martınez I (2002a) Adsorption of lindane from water onto GAC effect of carbon loading on kinetic behavior. Chem Eng J 87:111–120CrossRefGoogle Scholar
  52. Sotelo JL, Ovejero G, Delgado JA, Martınez I (2002b) Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC. Water Res 36:599–608PubMedCrossRefGoogle Scholar
  53. Spencer WF, Cliath MW, Blair JW, LeMert RA (1985) Transport of pesticides from irrigated fields in surface runoff and tile drain waters, vol 31, Conservation research report. Agricultural Research Service, USDA, Washington, DC, p 71Google Scholar
  54. Statistics Canada (2001) Protecting crops from pests. Canadian agriculture at a glance, Catalogue no. 96-325-XPBGoogle Scholar
  55. Svrcek C, Smith DW (2004) Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J Environ Eng Sci 3:155–185CrossRefGoogle Scholar
  56. Templeton SR, Zilberman D, Yoo SJ (1998) An economic perspective on outdoor residential pesticide use. Environ Sci Technol 21:416–423CrossRefGoogle Scholar
  57. Todd AK (2010) Changes in urban stream water pesticide concentrations one year after a cosmetic pesticides ban, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Queen’s Printer for Ontario, Ontario, 30 pGoogle Scholar
  58. Von Gunten U (2003) Ozonation in drinking water. Part I: Oxidation kinetics and product formation. Water Res 37:1443–1467CrossRefGoogle Scholar
  59. Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields. J Environ Qual 7:459–472CrossRefGoogle Scholar
  60. Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39(17):6649–6663PubMedCrossRefGoogle Scholar
  61. World Health Organization (WHO) (1988) Revision of the WHO guidelines for drinking-water quality. Document WHO/PEP/89.4, WHO, GenevaGoogle Scholar
  62. Yudelman M, Ratta A, Nygaard D (1998) Food, agriculture, and the environment, discussion paper 25, Pest Management and Food Production – Looking to the Future, International Food Policy Research Institute (IFPRI), Washington, DC, 53 pGoogle Scholar
  63. Zaviska F, Drogui P, Mercier G, Blais JF (2009) Procédé d’oxydation avancée dans le traitement des eaux et des effluents urbains et industriels: Application à la dégradation des polluants réfractaires. Rev Sci Eau 22(4):535–564Google Scholar
  64. Zaviska F, Drogui P, Mercier G, Blais JF, Lafrance P (2011) Experiment design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes. J Hazard Mater 185:1499–1507Google Scholar
  65. Zeng Z, Yang C (2008) Contrast experiment of the treatment of stable micro-polluted surface water between GAC-sand filtration and sand filtration. Gongye Shui chuli 28(9):43–46Google Scholar
  66. Zhou H, Smith DW (2001) Advanced technologies in water and wastewater treatment. Can J Civil Eng 28:49–66CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut National de la Recherche Scientifique, Centre-Eau Terre et Environnement (INRS-ETE)Université du QuébecQuébecCanada

Personalised recommendations