Skip to main content

Arthropod Genomics and Pest Management Targeting GPCRs

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests

Abstract

During the last 12 years more than 50 insect and other arthropod genome projects have been started and about half of them, mostly from insects, have now reached completion. These sequenced insect genomes are true milestones in insect research and represent invaluable resources for the study of insects. In our review we will shortly discuss the arthropods with a sequenced genome and in how far a sequenced genome might contribute to effective pest management. We will especially focus on G protein-coupled receptors (GPCRs), because these are “drugable” proteins and promising targets for a new generation of insecticides that are highly selective and safe for the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA et al (2000) The genomic sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Arensburger P, Megy K, Waterhouse RM et al (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88

    Article  PubMed  CAS  Google Scholar 

  • Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation. Bioessays 27:653–660

    Article  PubMed  Google Scholar 

  • Bai H, Zhu F, Shah K et al (2011) Large-scale RNAi screen of G protein-coupled receptors involved in larval growth, molting and metamorphosis in the red flour beetle. BMC Genomics 12:388

    Article  Google Scholar 

  • Bonasio R, Zhang G, Ye C et al (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Grimmelikhuijzen CJP (2002) Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci USA 99:12073–12078

    Article  PubMed  CAS  Google Scholar 

  • Clark AG, Eisen MB, Smith DR et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  PubMed  CAS  Google Scholar 

  • Collin C, Hauser F, Krogh-Meyer P et al (2011) Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides. Biochem Biophys Res Commun 412:578–583

    Article  PubMed  CAS  Google Scholar 

  • Dircksen H, Neupert S, Predel R et al (2011) Genomics, transcriptomics and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 10:4478–4504

    Article  PubMed  CAS  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E et al (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  Google Scholar 

  • Glenner H, Thomsen PF, Hebsgaard MB et al (2006) Evolution. The origin of insects. Science 314:1883–1884

    Article  PubMed  CAS  Google Scholar 

  • Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  Google Scholar 

  • Grimmelikhuijzen CJP, Cazzamali G, Williamson M et al (2009) Invertebrate neurohormone GPCRs. In: Squire L (ed) Encyclopedia of neuroscience, vol 5. Academic, Oxford, pp 205–212

    Chapter  Google Scholar 

  • Hansen KK, Stafflinger E, Schneider M et al (2010) Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 285:10736–10747

    Article  PubMed  CAS  Google Scholar 

  • Hansen KK, Hauser F, Williamson M et al (2011) The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochem Biophys Res Commun 404:184–189

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Nothacker HP, Grimmelikhuijzen CJP (1997) Molecular cloning, genomic organization and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 272:1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Sondergaard L, Grimmelikhuijzen CJP (1998) Molecular cloning, genomic organization and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to gonadotropin-releasing hormone receptors from vertebrates. Biochem Biophys Res Commun 249:822–828

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M et al (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M et al (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Neupert S, Willamson M et al (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9:5296–5310

    Article  PubMed  CAS  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Horodyski FM, Verlinden H, Filkin N et al (2011) Isolation and functional characterization of an allatotropin receptor from Manduca sexta. Insect Biochem Mol Biol 41:804–814

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Bartalska K, Audsley N et al (2010) MIPs are ancestral ligands for the sex peptide receptor. Proc Natl Acad Sci USA 107:6520–6525

    Article  PubMed  CAS  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W et al (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lenz C, Williamson M, Hansen GN et al (2001) Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 286:1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Li B, Predel R, Neupert S et al (2008) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Xu H, Zhu J et al (2011) Ras1(CA) overexpression in the posterior silk gland improves silk yield. Cell Res 21:934–943

    Article  PubMed  CAS  Google Scholar 

  • Mita K, Kasahara M, Sasaki S et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    Article  PubMed  CAS  Google Scholar 

  • Morse RA, Calderone NW (2000) The value of honey bee pollination in the United States. Bee Cult 128:1–15

    Google Scholar 

  • Nassel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104

    Article  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  CAS  Google Scholar 

  • Nygaard S, Zhang G, Schiott M et al (2011) The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 21:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Gibbs RA, Gerardo NM et al (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  Google Scholar 

  • Robinson GE, Hackett KJ, Purcell-Miramontes M et al (2011) Creating a buzz about insect genomes. Science 331:1386

    Article  PubMed  Google Scholar 

  • Secher T, Lenz C, Cazzamali G et al (2001) Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. J Biol Chem 276:47052–47060

    Article  PubMed  CAS  Google Scholar 

  • Smith CR, Smith CD, Robertson HM et al (2011a) Draft genome of the red harvester ant Pogonomyrmex barbatus. Proc Natl Acad Sci USA 108:5667–5672

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Zimin A, Holt C et al (2011b) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci USA 108:5673–5678

    Article  PubMed  CAS  Google Scholar 

  • Stables J, Green A, Marshall F et al (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252:115–126

    Article  PubMed  CAS  Google Scholar 

  • Stafflinger E, Hansen KK, Hauser F et al (2008) Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci USA 105:3262–3267

    Article  PubMed  CAS  Google Scholar 

  • Staubli F, Jorgensen TJD, Cazzamali G et al (2002) Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 99:3446–3451

    Article  PubMed  CAS  Google Scholar 

  • Suen G, Teiling C, Li L et al (2011) The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genet 7:e1002007

    Article  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654

    Article  PubMed  CAS  Google Scholar 

  • Weinstock GM, Robinson GE, Gibbs RA et al (2006) Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Werren JH, Richards S, Desjardins CA et al (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348

    Article  PubMed  CAS  Google Scholar 

  • Wurm Y, Wang J, Riba-Grognuz O et al (2011) The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci USA 108:5679–5684

    Article  PubMed  CAS  Google Scholar 

  • Xia Q, Zhou Z, Lu C et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Article  PubMed  Google Scholar 

  • Yamanaka N, Hua YJ, Roller L et al (2010) Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci USA 107:2060–2065

    Article  Google Scholar 

  • Yapici N, Kim YJ, Ribeiro C et al (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behavior. Nature 451:33–37

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Anders Bo Ronnegaard Hansen for typing the manuscript and the Danish Research Agency, and Novo Nordisk Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. P. Grimmelikhuijzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grimmelikhuijzen, C.J.P., Hauser, F. (2013). Arthropod Genomics and Pest Management Targeting GPCRs. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_8

Download citation

Publish with us

Policies and ethics