Arthropod Genomics and Pest Management Targeting GPCRs

  • Cornelis J. P. Grimmelikhuijzen
  • Frank Hauser


During the last 12 years more than 50 insect and other arthropod genome projects have been started and about half of them, mostly from insects, have now reached completion. These sequenced insect genomes are true milestones in insect research and represent invaluable resources for the study of insects. In our review we will shortly discuss the arthropods with a sequenced genome and in how far a sequenced genome might contribute to effective pest management. We will especially focus on G protein-coupled receptors (GPCRs), because these are “drugable” proteins and promising targets for a new generation of insecticides that are highly selective and safe for the environment.


Agricultural Pest Spider Mite Tetranychus Urticae GPCR Gene Important Agricultural Pest Epidemic Typhus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Anders Bo Ronnegaard Hansen for typing the manuscript and the Danish Research Agency, and Novo Nordisk Foundation for financial support.


  1. Adams MD, Celniker SE, Holt RA et al (2000) The genomic sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Arensburger P, Megy K, Waterhouse RM et al (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88PubMedCrossRefGoogle Scholar
  3. Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation. Bioessays 27:653–660PubMedCrossRefGoogle Scholar
  4. Bai H, Zhu F, Shah K et al (2011) Large-scale RNAi screen of G protein-coupled receptors involved in larval growth, molting and metamorphosis in the red flour beetle. BMC Genomics 12:388CrossRefGoogle Scholar
  5. Bonasio R, Zhang G, Ye C et al (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071PubMedCrossRefGoogle Scholar
  6. Cazzamali G, Grimmelikhuijzen CJP (2002) Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci USA 99:12073–12078PubMedCrossRefGoogle Scholar
  7. Clark AG, Eisen MB, Smith DR et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218PubMedCrossRefGoogle Scholar
  8. Colbourne JK, Pfrender ME, Gilbert D et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561PubMedCrossRefGoogle Scholar
  9. Collin C, Hauser F, Krogh-Meyer P et al (2011) Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides. Biochem Biophys Res Commun 412:578–583PubMedCrossRefGoogle Scholar
  10. Dircksen H, Neupert S, Predel R et al (2011) Genomics, transcriptomics and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 10:4478–4504PubMedCrossRefGoogle Scholar
  11. Douzery EJ, Snell EA, Bapteste E et al (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391CrossRefGoogle Scholar
  12. Glenner H, Thomsen PF, Hebsgaard MB et al (2006) Evolution. The origin of insects. Science 314:1883–1884PubMedCrossRefGoogle Scholar
  13. Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232CrossRefGoogle Scholar
  14. Grimmelikhuijzen CJP, Cazzamali G, Williamson M et al (2009) Invertebrate neurohormone GPCRs. In: Squire L (ed) Encyclopedia of neuroscience, vol 5. Academic, Oxford, pp 205–212CrossRefGoogle Scholar
  15. Hansen KK, Stafflinger E, Schneider M et al (2010) Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 285:10736–10747PubMedCrossRefGoogle Scholar
  16. Hansen KK, Hauser F, Williamson M et al (2011) The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochem Biophys Res Commun 404:184–189PubMedCrossRefGoogle Scholar
  17. Hauser F, Nothacker HP, Grimmelikhuijzen CJP (1997) Molecular cloning, genomic organization and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 272:1002–1010PubMedCrossRefGoogle Scholar
  18. Hauser F, Sondergaard L, Grimmelikhuijzen CJP (1998) Molecular cloning, genomic organization and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to gonadotropin-releasing hormone receptors from vertebrates. Biochem Biophys Res Commun 249:822–828PubMedCrossRefGoogle Scholar
  19. Hauser F, Cazzamali G, Williamson M et al (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19PubMedCrossRefGoogle Scholar
  20. Hauser F, Cazzamali G, Williamson M et al (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165PubMedCrossRefGoogle Scholar
  21. Hauser F, Neupert S, Willamson M et al (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9:5296–5310PubMedCrossRefGoogle Scholar
  22. Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149PubMedCrossRefGoogle Scholar
  23. Horodyski FM, Verlinden H, Filkin N et al (2011) Isolation and functional characterization of an allatotropin receptor from Manduca sexta. Insect Biochem Mol Biol 41:804–814PubMedCrossRefGoogle Scholar
  24. Kim YJ, Bartalska K, Audsley N et al (2010) MIPs are ancestral ligands for the sex peptide receptor. Proc Natl Acad Sci USA 107:6520–6525PubMedCrossRefGoogle Scholar
  25. Kirkness EF, Haas BJ, Sun W et al (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173PubMedCrossRefGoogle Scholar
  26. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  27. Lenz C, Williamson M, Hansen GN et al (2001) Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 286:1117–1122PubMedCrossRefGoogle Scholar
  28. Li B, Predel R, Neupert S et al (2008) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122PubMedCrossRefGoogle Scholar
  29. Ma L, Xu H, Zhu J et al (2011) Ras1(CA) overexpression in the posterior silk gland improves silk yield. Cell Res 21:934–943PubMedCrossRefGoogle Scholar
  30. Mita K, Kasahara M, Sasaki S et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35PubMedCrossRefGoogle Scholar
  31. Morse RA, Calderone NW (2000) The value of honey bee pollination in the United States. Bee Cult 128:1–15Google Scholar
  32. Nassel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104PubMedCrossRefGoogle Scholar
  33. Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723PubMedCrossRefGoogle Scholar
  34. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801PubMedCrossRefGoogle Scholar
  35. Nygaard S, Zhang G, Schiott M et al (2011) The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 21:1339–1348PubMedCrossRefGoogle Scholar
  36. Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275–285CrossRefGoogle Scholar
  37. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531CrossRefGoogle Scholar
  38. Richards S, Gibbs RA, Weinstock GM et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955PubMedCrossRefGoogle Scholar
  39. Richards S, Gibbs RA, Gerardo NM et al (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313CrossRefGoogle Scholar
  40. Robinson GE, Hackett KJ, Purcell-Miramontes M et al (2011) Creating a buzz about insect genomes. Science 331:1386PubMedCrossRefGoogle Scholar
  41. Secher T, Lenz C, Cazzamali G et al (2001) Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. J Biol Chem 276:47052–47060PubMedCrossRefGoogle Scholar
  42. Smith CR, Smith CD, Robertson HM et al (2011a) Draft genome of the red harvester ant Pogonomyrmex barbatus. Proc Natl Acad Sci USA 108:5667–5672PubMedCrossRefGoogle Scholar
  43. Smith CD, Zimin A, Holt C et al (2011b) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci USA 108:5673–5678PubMedCrossRefGoogle Scholar
  44. Stables J, Green A, Marshall F et al (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252:115–126PubMedCrossRefGoogle Scholar
  45. Stafflinger E, Hansen KK, Hauser F et al (2008) Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci USA 105:3262–3267PubMedCrossRefGoogle Scholar
  46. Staubli F, Jorgensen TJD, Cazzamali G et al (2002) Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 99:3446–3451PubMedCrossRefGoogle Scholar
  47. Suen G, Teiling C, Li L et al (2011) The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genet 7:e1002007PubMedCrossRefGoogle Scholar
  48. Terenius O, Papanicolaou A, Garbutt JS et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245PubMedCrossRefGoogle Scholar
  49. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018Google Scholar
  50. Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654PubMedCrossRefGoogle Scholar
  51. Weinstock GM, Robinson GE, Gibbs RA et al (2006) Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443:931–949CrossRefGoogle Scholar
  52. Werren JH, Richards S, Desjardins CA et al (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348PubMedCrossRefGoogle Scholar
  53. Wurm Y, Wang J, Riba-Grognuz O et al (2011) The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci USA 108:5679–5684PubMedCrossRefGoogle Scholar
  54. Xia Q, Zhou Z, Lu C et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940PubMedCrossRefGoogle Scholar
  55. Yamanaka N, Hua YJ, Roller L et al (2010) Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci USA 107:2060–2065CrossRefGoogle Scholar
  56. Yapici N, Kim YJ, Ribeiro C et al (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behavior. Nature 451:33–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Cornelis J. P. Grimmelikhuijzen
    • 1
  • Frank Hauser
    • 1
  1. 1.Center for Functional and Comparative Insect Genomics, Cell and Neurobiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations