Skip to main content

Bursicon as a Potential Target for Insect Control

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests
  • 1948 Accesses

Abstract

Bursicon is an insect heterodimeric neuropeptide hormone which binds to a specific G protein-coupled receptor, Drosophila leucine-rich repeats-containing G-protein-coupled receptor 2 (DLGR2) and regulates various aspects of cuticle tanning (sclerotization and melanization) and wing expansion in diverse insect orders. Bursicon was discovered 50 years ago by Gottfried Fraenkel using the blowfly Calliphora erythrocephala in a neck-ligated fly assay. Over the last few years, there has been a tremendous increase in our knowledge of bursicon molecular structure and signaling pathway due to recent advances in genomics, proteomics and genetic analysis, combined with physiological and behavior analysis. Insect neuropeptides, which are released from neurosecretory cells in the insect central nervous system (CNS), regulate virtually all aspects of insect life and would appear to be excellent candidates for development of new methods for pest control. As a critical neuropeptide during the process of insect molting cycle, bursicon could also be used for the design of novel, safe and selective compounds to control pests. Here, we will review recent advances in bursicon research and developments of neuropeptides for pest control, and then discuss the possibilities of bursicon as a target for pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holts RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Altstein M, Nässel DR (2010) Neuropeptide signaling in insects. Adv Exp Med Biol 692:155–165

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Simões ZL, Guidugli KR, Norberg K, Omholt SW (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 3:1

    Article  PubMed  Google Scholar 

  • An S, Wang S, Gilbert L, Beerntsen B, Ellersieck M, Song Q (2008) Global identification of bursicon-regulated genes in Drosophila melanogaster. BMC Genomics 9:424

    Article  PubMed  Google Scholar 

  • An S, Wang S, Song Q (2009) Identification of a novel bursicon-regulated transcriptional regulator, md13379, in the house fly Musca domestica. Arch Insect Biochem Physiol 70:106–121

    Article  PubMed  CAS  Google Scholar 

  • An S, Dong S, Wang Q, Li S, Gilbert LI, Stanley D, Song Q (2012) Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish. PLoS One 7(3):e34510

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (2005) Cuticular sclerotization and tanning. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier/Pergamon, Amsterdam, pp 145–170

    Chapter  Google Scholar 

  • Andersen SO (2010) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40:166–178

    Article  PubMed  CAS  Google Scholar 

  • Andersen SO (2012) Cuticular sclerotization and tanning. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic, San Diego, pp 67–192

    Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci 102:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995

    Article  PubMed  CAS  Google Scholar 

  • Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Palli SR (2010) Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi. Dev Biol 344:248–258

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Truman JW (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol 205:2555–2565

    PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Bendena WG (2010) Neuropeptide physiology in insects. Adv Exp Med Biol 692:166–691

    Article  PubMed  CAS  Google Scholar 

  • Brody T, Cravchik A (2000) Drosophila melanogaster G protein coupled receptors. J Cell Biol 150:F83–F88

    Article  PubMed  CAS  Google Scholar 

  • Coast GM, Orchard I, Phillips JE, Schooley DA (2002) Insect diuretic and antidiuretic hormones. Adv Insect Physiol 29:279–409

    Article  CAS  Google Scholar 

  • Cottrell CB (1962) The imaginal ecdysis of blowflies. The control of cuticular hardening and darkening. J Exp Biol 39:395–411

    CAS  Google Scholar 

  • Cruz J, Mané-Padrós D, Bellés X, Martín D (2006) Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Dev Biol 297:158–171

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Dewey EM, Zitnan D, Luo CW, Honegger HW, Adams ME (2008) Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. J Comp Neurol 506:759–774

    Article  PubMed  CAS  Google Scholar 

  • Davis MM, O’Keefe SL, Primrose DA, Hodgetts RB (2007) A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134:4395–4404

    Article  PubMed  CAS  Google Scholar 

  • Dewey EM, McNabb SL, Ewer J, Kuo GR, Takanishi CL, Truman JW, Honegger HW (2004) Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr Biol 14:1208–1213

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Friedrich M (2005) Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5:25

    Article  PubMed  Google Scholar 

  • Eriksen KK, Hauser F, Schiott M, Pedersen KM, Sondergaard L, Grimmelikhuijzen CJ (2000) Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res 10:924–938

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Reynolds S (2002) Neuropeptide control of molting in insects. In: Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT (eds) Hormones, brain and behavior. Academic, San Diego

    Google Scholar 

  • Fogal W, Fraenkel G (1969) The role of bursicon in melanization and endocuticle formation in the adult flesh fly, Sarcophaga bullata. J Insect Physiol 15:1235–1247

    Article  CAS  Google Scholar 

  • Fraenkel G (1975) Interactions between ecdysone, bursicon, and other endocrines during puparium formation and adult emergence in flies. Am Zool 15(Suppl 1):29–48

    Google Scholar 

  • Fraenkel G, Hsiao C (1962) Hormonal and nervous control of tanning in the fly. Science 138:27–29

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G, Hsiao C (1965) Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J Insect Physiol 11:513–556

    Article  CAS  Google Scholar 

  • Fraenkel G, Hsiao C, Seligman M (1966) Properties of bursicon: an insect protein hormone that controls cuticular tanning. Science 151:91–93

    Article  PubMed  CAS  Google Scholar 

  • Gammie SC, Truman JW (1997) Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth Manduca sexta. J Neurosci 17:4389–4397

    PubMed  CAS  Google Scholar 

  • Gammie SC, Truman JW (1999) Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J Exp Biol 202:343–352

    PubMed  CAS  Google Scholar 

  • Gorman MJ, Arakane Y (2010) Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. Insect Biochem Mol Biol 40:267–273

    Article  PubMed  CAS  Google Scholar 

  • Grossmann M, Weintraub BD, Szkudlinski MW (1997) Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological, and therapeutic implications for the glycoprotein hormone family. Endocr Rev 18:476–501

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Williamson M, Cazzamali G, Grimmelikhuijzen CJ (2006) Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Brief Funct Genomic Proteomic 4:321–330

    Article  PubMed  CAS  Google Scholar 

  • Hearn MT, Gomme PT (2000) Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit 13:223–278

    Article  PubMed  CAS  Google Scholar 

  • Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142

    Article  PubMed  CAS  Google Scholar 

  • Hirsh J, Davidson N (1981) Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster. Mol Cell Biol 1:475–485

    PubMed  CAS  Google Scholar 

  • Honegger HW, Market D, Pierce LA, Dewey EM, Kostron B, Wilson M, Choi D, Klukas KA, Mesce KA (2002) Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone. J Comp Neurol 452:163–177

    Article  PubMed  CAS  Google Scholar 

  • Honegger HW, Dewey EM, Kostron B (2004) From bioassays to Drosophila genetics: strategies for characterizing an essential insect neurohormone, bursicon. Symp Biol Hung 55:91–102

    Article  CAS  Google Scholar 

  • Honegger HW, Dewey EM, Ewer J (2008) Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol 194:989–1005

    Article  CAS  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang Y, Li M, Wang S, Liu W, Couble P, Zhao G, Huang Y (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581:697–701

    Article  PubMed  CAS  Google Scholar 

  • Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Gree MM (2007) Tissue remodeling during maturation of the Drosophila wing. Dev Biol 301:178–191

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Kodama A, Hayasaka Y, Ohta T (2004) Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 131:1597–1606

    Article  PubMed  CAS  Google Scholar 

  • Kostron B, Marquardt K, Kaltenhauser U, Honegger HW (1995) Bursicon, the cuticular sclerotizing hormone – comparison of its molecular mass in different insects. J Insect Physiol 41:1045–1053

    Article  CAS  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277:31283–31286

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics 5:510–522

    PubMed  CAS  Google Scholar 

  • Livingstone MS, Tempel BL (1983) Genetic dissection of monoamine transmitter synthesis in Drosophila. Nature 303:67–70

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2001) The Wigglesworth Lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507

    Article  PubMed  CAS  Google Scholar 

  • Loveall BJ, Deitcher DL (2010) The essential role of bursicon during Drosophila development. BMC Dev 10:92–108

    Article  Google Scholar 

  • Luan H, Lemon WC, Peabody NC, Pohl JB, Zelensky PK, Wang D, Nitabach MN, Holmes TC, White BH (2006) Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J Neurosci 26:573–584

    Article  PubMed  CAS  Google Scholar 

  • Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci 102:2820–2825

    Article  PubMed  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Maule AG, Mousley A, Marks NJ, Day TA, Thompson DP, Geary TG, Halton DW (2002) Neuropeptide signaling systems – potential drug targets for parasite and pest control. Curr Top Med Chem 2:733–758

    Article  PubMed  CAS  Google Scholar 

  • Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579:2171–2176

    Article  PubMed  CAS  Google Scholar 

  • Mercier J, Doucet D, Retnakaran A (2007) Molecular physiology of crustacean and insect neuropeptides. J Pestic Sci 32:345–359

    Article  CAS  Google Scholar 

  • Mills RR, Whitehead DL (1970) Hormonal control of tanning in the American cockroach: changes in blood cell permeability during ecdysis. J Insect Physiol 16:331–340

    Article  CAS  Google Scholar 

  • Mizoguchi A, Ohashi Y, Hosoda K, Ishibashi J, Kataoka H (2001) Developmental profile of the changes in the prothoracicotropic hormone titer in hemolymph of the silkworm Bombyx mori: correlation with ecdysteroid secretion. Insect Biochem Mol Biol 31:349–358

    Article  PubMed  CAS  Google Scholar 

  • Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40:363–375

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    Article  PubMed  Google Scholar 

  • Natzle JE, Kiger JA Jr, Green MM (2008) Bursicon signaling mutations separate epithelial-mesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation. Genetics 180:885–893

    Article  PubMed  Google Scholar 

  • Neckameyer WS, White K (1993) Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet 8:189–199

    Article  PubMed  CAS  Google Scholar 

  • Nishi S, Hsu SY, Zell K, Hsueh AJ (2000) Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinology 141:4081–4090

    Article  PubMed  CAS  Google Scholar 

  • Orchard I (1987) Adipokinetic hormone: an update. J Insect Physiol 33:451–463

    Article  CAS  Google Scholar 

  • Peabody NC, Diao F, Luan H, Wang H, Dewey EM, Honegger HW, White BH (2008) Bursicon functions within the Drosophila central nervous system to modulate wing expansion behavior, hormone secretion, and cell death. J Neurosci 28:14379–14391

    Article  PubMed  CAS  Google Scholar 

  • Pierce JG, Parsons TF (1981) Glycoprotein hormones: structure and function. Annu Rev Endocrinol 50:465–495

    CAS  Google Scholar 

  • Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  CAS  Google Scholar 

  • Rewitz KF, Yamanaka M, Gilbert LI, O’Connor MB (2009) The insect neuropeptide PTTH activates receptor tyrosine kinase Torso to initiate metamorphosis. Science 326:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SE (1983) Bursicon. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss. Inc., New York

    Google Scholar 

  • Scherkenbeck J, Zdobinsky T (2009) Insect neuropeptides: structures, chemical modifications and potential for insect control. Bioorg Med Chem 17:4071–4084

    Article  PubMed  CAS  Google Scholar 

  • Seligman M, Doy FA (1973) Hormonal regulation of disaggregation of cellular fragments in the haemolymph of Lusilia cuprina. J Insect Physiol 19:125–135

    Article  CAS  Google Scholar 

  • Seligman IM, Friedman S, Fraenkel G (1969) Bursicon mediation of tyrosine hydroxylation during tanning in their adult cuticle in the fly Sarcophaga bullata. J Insect Physiol 15:553–562

    Article  PubMed  CAS  Google Scholar 

  • Smith W, Rybczynski R (2012) Prothoracicotropic hormone. In: Gilbert LI (ed) Insect endocrinology. Academic, San Diego, pp 1–62

    Chapter  Google Scholar 

  • Song Q (2012) Bursicon, a neuropeptide hormone that controls cuticle tanning and wing expansion. In: Gilbert LI (ed) Insect endocrinology. Academic, San Diego, pp 93–105

    Chapter  Google Scholar 

  • Stone JV, Mordue W, Betley KE, Morris HR (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 265:207–221

    Article  Google Scholar 

  • Sudo S, Kuwabara Y, Park JI, Hsu SY, Hsueh AJ (2005) Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology 146:3596–3604

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Truman JW (1982) The distribution and molecular characteristics of the tanning hormone, bursicon, in the tobacco hornworm Manduca sexta. J Exp Biol 98:373–383

    CAS  Google Scholar 

  • Teal PE, Meredith JA, Nachman RJ (1999) Development of amphiphylic mimics of insect neuropeptides for pest control. Ann N Y Acad Sci 897:348–360

    Article  PubMed  CAS  Google Scholar 

  • Themmen APN, Huhtaniemi IT (2000) Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary–gonadal function. Endocr Rev 21:551–583

    Article  PubMed  CAS  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  • Van der Horst DJ, Van Marrewijk WJA, Diederen JHB (2001) Adipokinetic hormones of insects: release, signal transduction and responses. Int Rev Cytol 211:179–240

    Article  PubMed  Google Scholar 

  • Van Hiel MB, Van Loy T, Poels J, Vandersmissen HP, Verlinden H, Badisco L, Vanden Broeck J (2010) Neuropeptide receptors as possible targets for development of insect pest control agents. Adv Exp Med Biol 692:211–226

    Article  PubMed  Google Scholar 

  • Van Loy T, Van Hiel MB, Vandermissen HP, Poels J, Mendive F, Vassart G, Vanden Broeck J (2007) Evolutionary conservation of bursicon in the animal kingdom. Gen Comp Endocrinol 153:59–63

    Article  PubMed  Google Scholar 

  • Veelaert D, Passier P, Devreese B, Vanden Broeck J, Van Beeumen J, Vullings H, Diederen J, Schoofs L, De Loof A (1997) Isolation and characterization of an adipokinetic hormone release-inducing factor in locusts: the crustacean cardioactive peptide. Endocrinology 138:138–142

    Article  PubMed  Google Scholar 

  • Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signal molecules. Mol Endocrinol 15:681–694

    Article  PubMed  CAS  Google Scholar 

  • Wang S, An S, Song Q (2008) Transcriptional expression of bursicon and novel bursicon-regulated genes in the house fly Musca domestica. Arch Insect Biochem Physiol 68:100–112

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6(4):e18644

    Article  PubMed  CAS  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6(5):e20504

    Article  PubMed  CAS  Google Scholar 

  • Zitnan D, Adams ME (2000) Excitatory and inhibitory roles of central ganglia in initiation of the insect ecdysis behavioural sequence. J Exp Biol 203:1329–1340

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisheng Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, S., Song, Q. (2013). Bursicon as a Potential Target for Insect Control. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_5

Download citation

Publish with us

Policies and ethics