Skip to main content

G Protein-Coupled Receptors as Target Sites for Insecticide Discovery

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests

Abstract

G protein-coupled receptors (GPCR) are proteins that contain seven-transmembrane domains and sense external signals and transducer these signals by activating intercellular pathways. GPCR family is considered as the largest integrate membrane receptor family and GPCRs are present in almost all the eukaryotes tested. About 1–2% of all genes in an insect genome code for GPCRs. GPCRs do not share high overall sequence homology. Whole genome sequencing identified about 200 GPCRs in Drosophila melanogaster and 276 GPCRs in Anopheles gambiae. The biological function studies are mostly focused on neurohormone (biogenic amine, neuropeptide and protein hormone) GPCRs. Diverse functions of insect GPCRs in feeding behavior, locomotion activity, metabolism, circadian rhythm, development and reproduction have been characterized in the past few years. Although, more than 40% of the pharmaceutical drugs that are currently in the market target human GPCRs, there is not a single insecticide that target GPCR. We will review recent literature on ligand activated GPCRs identified from insects, in regards to their classification and functions, and discuss possible GPCR targets and screening assays to identify insecticides that target GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195. doi:8392[pii]

    Article  PubMed  Google Scholar 

  • Aikins MJ, Schooley DA, Begum K, Detheux M, Beeman RW, Park Y (2008) Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle. Insect Biochem Mol Biol 38(7):740–748. doi:S0965-1748(08)00072-6[pii]10.1016/j.ibmb.2008.04.006

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125(11–12):984–995. doi:S0925-4773(08)00137-8[pii]10.1016/j.mod.2008.09.002[doi]

    Article  PubMed  CAS  Google Scholar 

  • Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4(3):343–354. doi:0896-6273(90)90047-J[pii]

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Palli SR (2010) Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi. Dev Biol 344(1):248–258. doi:S0012-1606(10)00289-7[pii]10.1016/j.ydbio.2010.05.003

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Zhu F, Shah K, Palli S (2011) Large-scale RNAi screen of G protein-coupled receptors involved in larval growth, molting and metamorphosis in the red flour beetle. BMC Genomics 12(1):388

    Article  PubMed  CAS  Google Scholar 

  • Baker JD, Truman JW (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol 205(Pt 17):2555–2565

    PubMed  CAS  Google Scholar 

  • Balfanz S, Strunker T, Frings S, Baumann A (2005) A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93(2):440–451. doi:JNC3034[pii]10.1111/j.1471-4159.2005.03034.x

    Article  PubMed  CAS  Google Scholar 

  • Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem Mol Biol 35(8):873–882. doi:S0965-1748(05)00093-7[pii]10.1016/j.ibmb.2005.03.005

    Article  PubMed  CAS  Google Scholar 

  • Belmont M, Cazzamali G, Williamson M, Hauser F, Grimmelikhuijzen CJ (2006) Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 344(1):160–165. doi:S0006-291X(06)00670-X[pii]10.1016/j.bbrc.2006.03.117

    Article  PubMed  CAS  Google Scholar 

  • Birgul N, Weise C, Kreienkamp HJ, Richter D (1999) Reverse physiology in drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J 18(21):5892–5900. doi:10.1093/emboj/18.21.5892

    Article  PubMed  CAS  Google Scholar 

  • Birse RT, Johnson EC, Taghert PH, Nassel DR (2006) Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 66(1):33–46. doi:10.1002/neu.20189

    Article  PubMed  CAS  Google Scholar 

  • Blackburn MB, Jaffe H, Kochansky J, Raina AK (2001) Identification of four additional myoinhibitory peptides (MIPs) from the ventral nerve cord of Manduca sexta. Arch Insect Biochem Physiol 48(3):121–128. doi:10.1002/arch.1064[pii]10.1002/arch.1064

    Article  PubMed  CAS  Google Scholar 

  • Blenau W (2005) Cellular actions of biogenic amines. Arch Insect Biochem Physiol 59(3):99–102. doi:10.1002/arch.20072

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48(1):13–38. doi:10.1002/arch.1055[pii]10.1002/arch.1055

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Erber J, Baumann A (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J Neurochem 70(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Balfanz S, Baumann A (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74(3):900–908

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, PhilippePin J (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729. doi:10.1093/emboj/18.7.1723

    Article  PubMed  CAS  Google Scholar 

  • Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, Zhang P, Huang Z, Berger SL, Reinberg D, Wang J, Liebig J (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329(5995):1068–1071. doi:329/5995/1068[pii]10.1126/science.1192428

    Article  PubMed  CAS  Google Scholar 

  • Brody T, Cravchik A (2000) Drosophila melanogaster G protein-coupled receptors. J Cell Biol 150(2):F83–F88

    Article  PubMed  CAS  Google Scholar 

  • Broeck JV (2001) Insect G protein-coupled receptors and signal transduction. Arch Insect Biochem Physiol 48(1):1–12. doi:10.1002/arch.1054[pii]10.1002/arch.1054[doi]

    Article  PubMed  CAS  Google Scholar 

  • Brown BE (1975) Proctolin: a peptide transmitter candidate in insects. Life Sci 17(8):1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Grimmelikhuijzen CJ (2002) Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci USA 99(19):12073–12078. doi:10.1073/pnas.192442799192442799[pii]

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Saxild N, Grimmelikhuijzen C (2002) Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 298(1):31–36. doi:S0006291X02023987[pii]

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Hauser F, Kobberup S, Williamson M, Grimmelikhuijzen CJ (2003) Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochem Biophys Res Commun 303(1):146–152. doi:S0006291X03003024[pii]

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Klaerke DA, Grimmelikhuijzen CJ (2005a) A new family of insect tyramine receptors. Biochem Biophys Res Commun 338(2):1189–1196. doi:S0006-291X(05)02321-1[pii]10.1016/j.bbrc.2005.10.058

    Article  PubMed  CAS  Google Scholar 

  • Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJ (2005b) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 335(1):14–19. doi:S0006-291X(05)01497-X[pii]10.1016/j.bbrc.2005.07.038

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Shields TS, Stork PJ, Cone RD (1995) A colorimetric assay for measuring activation of Gs- and Gq- coupled signaling pathways. Anal Biochem 226(2):349–354. doi:S0003269785712353[pii]

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang Y, Shen P (2008) A protein kinase C activity localized to neuropeptide Y-like neurons mediates ethanol intoxication in Drosophila melanogaster. Neuroscience 156(1):42–47. doi:S0306-4522(08)01033-6[pii]10.1016/j.neuroscience.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  • Clark MC, Baro DJ (2007) Arthropod D-2 receptors positively couple with cAMP through the Gi/o protein family. Comp Biochem Physiol B Biochem Mol Biol 146(1):9–19. doi:10.1016/j.cbpb.2006.08.018

    Article  PubMed  CAS  Google Scholar 

  • Corey JL, Quick MW, Davidson N, Lester HA, Guastella J (1994) A cocaine-sensitive Drosophila serotonin transporter: cloning, expression, and electrophysiological characterization. Proc Natl Acad Sci USA 91(3):1188–1192

    Article  PubMed  CAS  Google Scholar 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, de Simoes RM, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325(5938):340–343. doi:1173164[pii]10.1126/science.1173164

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Dewey EM, Zitnan D, Luo CW, Honegger HW, Adams ME (2008) Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. J Comp Neurol 506(5):759–774. doi:10.1002/cne.21575

    Article  PubMed  CAS  Google Scholar 

  • Downer KE, Haselton AT, Nachman RJ, Stoffolano JG Jr (2007) Insect satiety: sulfakinin localization and the effect of drosulfakinin on protein and carbohydrate ingestion in the blow fly, Phormia regina (Diptera: Calliphoridae). J Insect Physiol 53(1):106–112. doi:S0022-1910(06)00196-X[pii]10.1016/j.jinsphys.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  • Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS (2007) Locomotor activity is regulated by D2 like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67(3):378–393. doi:10.1002/dneu.20355[doi]

    Article  PubMed  CAS  Google Scholar 

  • Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M (2000) A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284(2):316–326. doi:10.1006/abio.2000.4698S0003-2697(00)94698-0[pii]

    Article  PubMed  CAS  Google Scholar 

  • Ebert PR, Rowland JE, Toma DP (1998) Isolation of seven unique biogenic amine receptor clones from the honey bee by library scanning. Insect Mol Biol 7(2):151–162. doi:10.1046/j.1365-2583.1998.72059.x

    Article  PubMed  CAS  Google Scholar 

  • Egerod K, Reynisson E, Hauser F, Cazzamali G, Williamson M, Grimmelikhuijzen CJ (2003a) Molecular cloning and functional expression of the first two specific insect myosuppress in receptors. Proc Natl Acad Sci USA 100(17):9808–9813. doi:10.1073/pnas.16321971001632197100[pii]

    Article  PubMed  CAS  Google Scholar 

  • Egerod K, Reynisson E, Hauser F, Williamson M, Cazzamali G, Grimmelikhuijzen CJ (2003b) Molecular identification of the first insect proctolin receptor. Biochem Biophys Res Commun 306(2):437–442. doi:S0006291X03009975[pii]

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Hannan F, Reale V, Hon YY, Kousky CT, Evans PD, Hall LM (1996) Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J Neurosci 16(12):3925–3933

    PubMed  CAS  Google Scholar 

  • Filmore D (2004) It’s a GPCR world. Mod Drug Discov 11(7):24–28

    Google Scholar 

  • Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425. doi:mol.104.009001[pii]10.1124/mol.104.009001

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. doi:10.1124/mol.63.6.125663/6/1256[pii]

    Article  PubMed  CAS  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113

    Article  PubMed  CAS  Google Scholar 

  • Gotzes F, Balfanz S, Baumann A (1994) Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors. Receptors Channels 2(2):131–141

    PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen CJ, Cazzamali G, Williamson M, Hauser F (2007) The promise of insect genomics. Pest Manag Sci 63(5):413–416. doi:10.1002/ps.1352

    Article  PubMed  CAS  Google Scholar 

  • Grohmann L, Blenau W, Erber J, Ebert PR, Strunker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86(3):725–735. doi:1876[pii]

    Article  PubMed  CAS  Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135. doi:10.1146/annurev.ento.51.051705.113646

    Article  PubMed  CAS  Google Scholar 

  • Han KA, Millar NS, Grotewiel MS, Davis RL (1996) DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16(6):1127–1135. doi:S0896-6273(00)80139-7[pii]

    Article  PubMed  CAS  Google Scholar 

  • Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18(10):3650–3658

    PubMed  CAS  Google Scholar 

  • Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJ (2010) Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 285(14):10736–10747. doi:M109.045369[pii]10.1074/jbc.M109.045369

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Nothacker HP, Grimmelikhuijzen CJ (1997) Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 272(2):1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80(1):1–19. doi:S0301-0082(06)00080-3[pii]10.1016/j.pneurobio.2006.07.005[doi]

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJ (2008a) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29(1):142–165. doi:S0091-3022(07)00058-1[pii]10.1016/j.yfrne.2007.10.003[doi]

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP (2008b) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29(1):142–165. doi:10.1016/j.yfrne.2007.10.003

    Article  PubMed  CAS  Google Scholar 

  • Hearn MG, Ren Y, McBride EW, Reveillaud I, Beinborn M, Kopin AS (2002) A Drosophila dopamine 2 like receptor: molecular characterization and identification of multiple alternatively spliced variants. Proc Natl Acad Sci USA 99(22):14554–14559. doi:10.1073/pnas.202498299202498299[pii]

    Article  PubMed  CAS  Google Scholar 

  • Hector CE, Bretz CA, Zhao Y, Johnson EC (2009) Functional differences between two CRF-related diuretic hormone receptors in Drosophila. J Exp Biol 212(19):3142–3147. doi:212/19/3142[pii]10.1242/jeb.033175

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298(5591):176–178. doi:10.1126/science.1076196[doi]298/5591/176[pii]

    Article  PubMed  CAS  Google Scholar 

  • Holman GM, Cook BJ, Nachman RJ (1986) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comp Biochem Physiol C 85(1):219–224

    Article  PubMed  CAS  Google Scholar 

  • Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 31(1):294–297

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang Y, Li M, Wang S, Liu W, Couble P, Zhao G, Huang Y (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581(4):697–701. doi:S0014-5793(07)00072-5[pii]10.1016/j.febslet.2007.01.034

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y (2009) Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol 39(11):842–849. doi:S0965-1748(09)00148-9[pii]10.1016/j.ibmb.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  • Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314(5799):647–649. doi:314/5799/647[pii]10.1126/science.1124128

    Article  PubMed  CAS  Google Scholar 

  • Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J, Shin J, Lee J, Jeon K, Hwang S, Bae E, Kim J (2005) Drosophila GPCR Hanisa receptor for the circadian clock neuropeptide PDF. Neuron 48(2):267–278. doi:S0896-6273(05)00700-2[pii]10.1016/j.neuron.2005.08.025

    Article  PubMed  CAS  Google Scholar 

  • Ignell R, Root CM, Birse RT, Wang JW, Nassel DR, Winther AM (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc Natl Acad Sci USA 106(31):13070–13075. doi:0813004106[pii]10.1073/pnas.0813004106

    Article  PubMed  CAS  Google Scholar 

  • Iversen A, Cazzamali G, Williamson M, Hauser F, Grimmelikhuijzen CJ (2002a) Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and-2. Biochem Biophys Res Commun 299(4):628–633. doi:S0006291X02027092[pii]

    Article  PubMed  CAS  Google Scholar 

  • Iversen A, Cazzamali G, Williamson M, Hauser F, Grimmelikhuijzen CJ (2002b) Molecular identification of the first insect ecdysis triggering hormone receptors. Biochem Biophys Res Commun 299(5):924–931. doi:S0006291X02027985[pii]

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Bohn LM, Barak LS, Birse RT, Nassel DR, Caron MG, Taghert PH (2003a) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin 2 interactions. J Biol Chem 278(52):52172–52178. doi:10.1074/jbc.M306756200M306756200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Garczynski SF, Park D, Crim JW, Nassel DR, Taghert PH (2003b) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci USA 100(10):6198–6203. doi:10.1073/pnas.10301081001030108100[pii]

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Bohn LM, Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 207(Pt 5):743–748

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208(Pt 7):1239–1246. doi:208/7/1239[pii]10.1242/jeb.01529

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen LM, Hauser F, Cazzamali G, Williamson M, Grimmelikhuijzen CJ (2006) Molecular identification of the first SIFamide receptor. Biochem Biophys Res Commun 340(2):696–701. doi:S0006-291X(05)02812-3[pii]10.1016/j.bbrc.2005.12.062

    Article  PubMed  CAS  Google Scholar 

  • Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C, Perrimon N (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2(4):27. doi:10.1186/1475-4924-2-27

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Bartalska K, Audsley N, Yamanaka N, Yapici N, Lee JY, Kim YC, Markovic M, Isaac E, Tanaka Y, Dickson BJ (2010) MIPs are ancestral ligands for the sex peptide receptor. Proc Natl Acad Sci USA 107(14):6520–6525. doi:0914764107[pii]10.1073/pnas.0914764107

    Article  PubMed  CAS  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubio JM, Ribeiro JM, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li HM, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguade M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic life style. Proc Natl Acad Sci USA 107(27):12168–12173. doi:1003379107[pii]10.1073/pnas.1003379107

    Article  PubMed  CAS  Google Scholar 

  • Klose MK, Dason JS, Atwood HL, Boulianne GL, Mercier AJ (2010) Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. J Neurosci 30(44):14724–14734. doi:30/44/14724[pii]10.1523/JNEUROSCI.3612-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Knight PJ, Pfeifer TA, Grigliatti TA (2003) A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines. Anal Biochem 320(1):88–103. doi:S0003269703003543[pii]

    Article  PubMed  CAS  Google Scholar 

  • Kolakowski LF Jr (1994) GCRDB: a G-protein-coupled receptor database. Receptors Channels 2(1):1–7

    PubMed  CAS  Google Scholar 

  • Kreienkamp HJ, Larusson HJ, Witte I, Roeder T, Birgul N, Honck HH, Harder S, Ellinghausen G, Buck F, Richter D (2002) Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and −2, from Drosophila melanogaster and their ligands by reverse pharmacology. J Biol Chem 277(42):39937–39943. doi:10.1074/jbc.M206931200M206931200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Kubiak TM, Larsen MJ, Burton KJ, Bannow CA, Martin RA, Zantello MR, Lowery DE (2002) Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Biochem Biophys Res Commun 291(2):313–320. doi:10.1006/bbrc.2002.6459S0006291X02964594[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357. doi:nrd2518[pii]10.1038/nrd2518

    Article  PubMed  CAS  Google Scholar 

  • Larsen MJ, Burton KJ, Zantello MR, Smith VG, Lowery DL, Kubiak TM (2001) Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochem Biophys Res Commun 286(5):895–901. doi:10.1006/bbrc.2001.5476S0006-291X(01)95476-2[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lear BC, Zhang L, Allada R (2009) The neuropeptide PDF acts directly on evening pacemaker neurons to regulate multiple features of circadian behavior. PLoS Biol 7(7):e1000154. doi:10.1371/journal.pbio.1000154

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, You KH, Choo JK, Han YM, Yu K (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279(49):50781–50789. doi:10.1074/jbc.M407842200M407842200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lenz C, Sondergaard L, Grimmelikhuijzen CJ (2000a) Molecular cloning and genomic organization of a novel receptor from Drosophila melanogaster structurally related to mammalian galanin receptors. Biochem Biophys Res Commun 269(1):91–96. doi:10.1006/bbrc.2000.2251S0006-291X(00)92251-4[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lenz C, Williamson M, Grimmelikhuijzen CJ (2000b) Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster. Biochem Biophys Res Commun 273(3):1126–1131. doi:10.1006/bbrc.2000.3062S0006-291X(00)93062-6[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lenz C, Williamson M, Hansen GN, Grimmelikhuijzen CJ (2001) Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 286(5):1117–1122. doi:10.1006/bbrc.2001.5475S0006-291X(01)95475-0[pii] -&gt

    Article  PubMed  CAS  Google Scholar 

  • Lingo PR, Zhao Z, Shen P (2007) Co-regulation of cold-resistant food acquisition by insulin-and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience 148(2):371–374. doi:S0306-4522(07)00789-0[pii]10.1016/j.neuroscience.2007.06.010

    Article  PubMed  CAS  Google Scholar 

  • Loveall BJ, Deitcher DL (2010) The essential role of bursicon during Drosophila development. BMC Dev Biol 10:92. doi:1471-213X-10-92[pii]10.1186/1471-213X-10-92

    Article  PubMed  CAS  Google Scholar 

  • Lu H-L, Kersch CN, Taneja-Bageshwar S, Pietrantonio PV (2011) A calcium bioluminescence assay for functional analysis of mosquito (Aedes aegypti) and tick (Rhipicephalus microplus) G protein-coupled receptors. J Vis Exp (50):e2732

    Google Scholar 

  • Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein coupled receptor LGR2. Proc Natl Acad Sci USA 102(8):2820–2825. doi:0409916102[pii]10.1073/pnas.0409916102

    Article  PubMed  CAS  Google Scholar 

  • Maestro JL, Aguilar R, Pascual N, Valero ML, Piulachs MD, Andreu D, Navarro I, Belles X (2001) Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the German cockroach. Are arthropod sulfakinins homologous to vertebrate gastrins-cholecystokinins? Eur J Biochem 268(22):5824–5830. doi:2527[pii]

    Article  PubMed  CAS  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94(2):547–560. doi:JNC3251[pii]10.1111/j.1471-4159.2005.03251.x

    Article  PubMed  CAS  Google Scholar 

  • Meeusen T, Mertens I, Clynen E, Baggerman G, Nichols R, Nachman RJ, Huybrechts R, DeLoof A, Schoofs L (2002) Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc Natl Acad Sci USA 99(24):15363–15368. doi:10.1073/pnas.252339599252339599[pii]

    Article  PubMed  CAS  Google Scholar 

  • Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579(10):2171–2176. doi:S0014-5793(05)00324-8[pii]10.1016/j.febslet.2005.03.006

    Article  PubMed  CAS  Google Scholar 

  • Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, De Loof A, Schoofs L, Taghert PH (2005) PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48(2):213–219. doi:S0896-6273(05)00776-2[pii]10.1016/j.neuron.2005.09.009

    Article  PubMed  CAS  Google Scholar 

  • Meyering-Vos M, Muller A (2007) RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J Insect Physiol 53(8):840–848. doi:S0022-1910(07)00112-6[pii]10.1016/j.jinsphys.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  • Mitri C, Parmentier M-L, Pin J-P, Bockaert Jl, Grau Y (2004) Divergent evolution in metabotropic glutamate receptors. J Biol Chem 279(10):9313–9320. doi:10.1074/jbc.M310878200

    Article  PubMed  CAS  Google Scholar 

  • Mitri C, Soustelle L, Framery Brn, Bockaert Jl, Parmentier M-L, Grau Y (2009) Plant insecticide L-Canavanine repels Drosophila via the insect orphan GPCR DmX. PLoS Biol 7(6):e1000147

    Article  PubMed  CAS  Google Scholar 

  • Mitsumasu K, Ohta H, Tsuchihara K, Asaoka K, Ozoe Y, Niimi T, Yamashita O, Yaginuma T (2008) Molecular cloning and characterization of cDNAs encoding dopamine receptor-1 and -2 from brain-suboesophageal ganglion of the silkworm, Bombyx mori. Insect Mol Biol 17(2):185–195. doi:10.1111/j.1365-2583.2008.00792.x

    Article  PubMed  CAS  Google Scholar 

  • Nachman RJ, Teal PE, Ujvary I (2001) Comparative topical pheromonotropic activity of insect pyrokinin/PBAN amphiphilic analogs incorporating different fatty and/or cholic acid components. Peptides 22(2):279–285. doi:S0196-9781(00)00380-6[pii]

    Article  PubMed  CAS  Google Scholar 

  • Nassel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68(1):1–84. doi:S0301008202000576[pii]

    Article  PubMed  Google Scholar 

  • Nassel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92(1):42–104. doi:S0301-0082(10)00100-0[pii]10.1016/j.pneurobio.2010.04.010

    Article  PubMed  CAS  Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’Leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Van zee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316(5832):1718–1723. doi:1138878[pii]10.1126/science.1138878

    Article  PubMed  CAS  Google Scholar 

  • Nichols R, Egle JP, Langan NR, Palmer GC (2008) The different effects of structurally related sulfakinins on Drosophila melanogaster odor preference and locomotion suggest involvement of distinct mechanisms. Peptides 29(12):2128–2135. doi:S0196-9781(08)00359-8[pii]10.1016/j.peptides.2008.08.010

    Article  PubMed  CAS  Google Scholar 

  • Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 37(12):1323–1332. doi:ng1682[pii]10.1038/ng1682

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Tsuchihara K, Mitsumasu K, Yaginuma T, Ozoe Y, Asaoka K (2009) Comparative pharmacology of two D1-like dopamine receptors cloned from the silkworm Bombyx mori. Insect Biochem Mol Biol 39(5–6):342–347. doi:10.1016/j.ibmb.2009.01.011

    Article  PubMed  CAS  Google Scholar 

  • Olsen SS, Cazzamali G, Williamson M, Grimmelikhuijzen CJ, Hauser F (2007) Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 362(2):245–251. doi:S0006-291X(07)01438-6[pii]10.1016/j.bbrc.2007.06.190

    Article  PubMed  CAS  Google Scholar 

  • Onai T, FitzGerald MG, Arakawa S, Gocayne JD, Urquhart DA, Hall LM, Fraser CM, McCombie WR, Venter JC (1989) Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor. FEBS Lett 255(2):219–225. doi:0014-5793(89)81095-6[pii]

    Article  PubMed  CAS  Google Scholar 

  • Ono H, Yoshikawa H (2004) Identification of amine receptors from a swallowtail butterfly, Papilio xuthus L.: cloning and mRNA localization in foreleg chemosensory organ for recognition of host plants. Biochem Mol Biol 34(12):1247–1256. doi:10.1016/j.ibmb.2004.08.009

    CAS  Google Scholar 

  • Orchard I, Belanger JH, Lange AB (1989) Proctolin: a review with emphasis on insects. J Neurobiol 20(5):470–496. doi:10.1002/neu.480200515

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Broadie KS (2007) Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses. J Neurosci 27(45):12378–12389. doi:10.1523/jneurosci.2970-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Adams ME (2005) Insect G protein-coupled receptors: recent discoveries and implications. In: Lawrence IG, Kostas I, Sarjeet SG, Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 143–171

    Chapter  Google Scholar 

  • Park WJ, Liu J, Adler PN (1994) Frizzled gene expression and development of tissue polarity in the Drosophila wing. Dev Genet 15(4):383–389. doi:10.1002/dvg.1020150410[doi]

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kim YJ, Adams ME (2002) Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA 99(17):11423–11428. doi:10.1073/pnas.162276199[doi]162276199[pii]

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kim YJ, Dupriez V, Adams ME (2003) Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster. J Biol Chem 278(20):17710–17715. doi:10.1074/jbc.M301119200M301119200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Perez DM (2005) From plants to man: the GPCR “tree of life”. Mol Pharmacol 67(5):1383–1384. doi:mol.105.011890[pii]10.1124/mol.105.011890[doi]

    Article  PubMed  CAS  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. doi:10.1038/nrm908[doi]nrm908[pii]

    Article  PubMed  CAS  Google Scholar 

  • Pietrantonio PV, Jagge C, McDowell C (2001) Cloning and expression analysis of a 5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems. Insect Mol Biol 10(4):357–369. doi:10.1046/j.0962-1075.2001.00274.x

    Article  PubMed  CAS  Google Scholar 

  • Poels J, Birse RT, Nachman RJ, Fichna J, Janecka A, Vanden Broeck J, Nassel DR (2009) Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6. Peptides 30(3):545–556. doi:S0196-9781(08)00449-X[pii]10.1016/j.peptides.2008.10.012

    Article  PubMed  CAS  Google Scholar 

  • Pollock VP, McGettigan J, Cabrero P, Maudlin IM, Dow JA, Davies SA, Pollock VP, McGettigan J, Cabrero P, Maudlin IM, Dow JA, Davies SA (2004) Conservation of capa peptide-induced nitric oxide signalling in Diptera. J Exp Biol 207(Pt23):4135–4145. doi:207/23/4135[pii]10.1242/jeb.01255

    Article  PubMed  CAS  Google Scholar 

  • Predel R, Nachman RJ (2001) Efficacy of native FXPRLamides (pyrokinins) and synthetic analogs on visceral muscles of the American cockroach. J Insect Physiol 47(3):287–293. doi:S002219100000113X[pii]

    Article  PubMed  CAS  Google Scholar 

  • Price MD, Merte J, Nichols R, Koladich PM, Tobe SS, Bendena WG (2002) Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 23(4):787–794. doi:S0196978101006490[pii]

    Article  PubMed  CAS  Google Scholar 

  • Rao KR, Mohrherr CJ, Riehm JP, Zahnow CA, Norton S, Johnson L, Tarr GE (1987) Primary structure of an analog of crustacean pigment-dispersing hormone from the lubber grasshopper Romalea microptera. J Biol Chem 262(6):2672–2675

    PubMed  CAS  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Roth S, Schroder R, Tautz D, Zdobnov EM, Muzny D, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Lewis LR, Margolis J, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Parker D, Ruiz SJ, Santibanez J, Savard J, Scherer SE, Schneider B, Sodergren E, Vattahil S, Villasana D, White CS, Wright R, Park Y, Lord J, Oppert B, Brown S, Wang L, Weinstock G, Liu Y, Worley K, Elsik CG, Reese JT, Elhaik E, Landan G, Graur D, Arensburger P, Atkinson P, Beidler J, Demuth JP, Drury DW, Du YZ, Fujiwara H, Maselli V, Osanai M, Robertson HM, Tu Z, Wang JJ, Wang S, Song H, Zhang L, Werner D, Stanke M, Morgenstern B, Solovyev V, Kosarev P, Brown G, Chen HC, Ermolaeva O, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Maglott D, Pruitt K, Sapojnikov V, Souvorov A, Mackey AJ, Waterhouse RM, Wyder S, Kriventseva EV, Kadowaki T, Bork P, Aranda M, Bao R, Beermann A, Berns N, Bolognesi R, Bonneton F, Bopp D, Butts T, Chaumot A, Denell RE, Ferrier DE, Gordon CM, Jindra M, Lan Q, Lattorff HM, Laudet V, von Levetsow C, Liu Z, Lutz R, Lynch JA, da Fonseca RN, Posnien N, Reuter R, Schinko JB, Schmitt C, Schoppmeier M, Shippy TD, Simonnet F, Marques-Souza H, Tomoyasu Y, Trauner J, Vander Zee M, Vervoort M, Wittkopp N, Wimmer EA, Yang X, Jones AK, Sattelle DB, Ebert PR, Nelson D, Scott JG, Muthukrishnan S, Kramer KJ, Arakane Y, Zhu Q, Hogenkamp D, Dixit R, Jiang H, Zou Z, Marshall J, Elpidina E, Vinokurov K, Oppert C, Evans J, Lu Z, Zhao P, Sumathipala N, Altincicek B, Vilcinskas A, Williams M, Hultmark D, Hetru C, Hauser F, Cazzamali G, Williamson M, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Raible F, Walden KK, Angeli S, Foret S, Schuetz S, Maleszka R, Miller SC, Grossmann D (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452(7190):949–955. doi:nature06784[pii]10.1038/nature06784

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, Robertson HM, Schneider DJ (2011) Creating a buzz about insect genomes. Science 331(6023):1386. doi:331/6023/1386[pii]10.1126/science.331.6023.1386

    Article  PubMed  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477. doi:10.1146/annurev.ento.50.071803.130404

    Article  PubMed  CAS  Google Scholar 

  • Roller L, Yamanaka N, Watanabe K, Daubnerova I, Zitnan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Rosenkilde C, Cazzamali G, Williamson M, Hauser F, Sondergaard L, De Lotto R, Grimmelikhuijzen CJ (2003) Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem Biophys Res Commun 309(2):485–494. doi:S0006291X03016139[pii]

    Article  PubMed  CAS  Google Scholar 

  • Rotte C, Krach C, Balfanz S, Baumann A, Walz B, Blenau W (2009) Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 162(4):1120–1133. doi:S0306-4522(09)00980-4[pii]10.1016/j.neuroscience.2009.05.066

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Hen R (1994) 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem Int 25(6):503–532

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Amlaiky N, Plassat JL, Borrelli E, Hen R (1990) Cloning and characterization of a Drosophila tyramine receptor. EMBO J 9(11):3611–3617

    PubMed  CAS  Google Scholar 

  • Saudou F, Boschert U, Amlaiky N, Plassat JL, Hen R (1992) A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. EMBO J 11(1):7–17

    PubMed  CAS  Google Scholar 

  • Schlenstedt J, Balfanz S, Baumann A, Blenau W (2006) Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J Neurochem 98(6):1985–1998. doi:JNC4012[pii]10.1111/j.1471-4159.2006.04012.x

    Article  PubMed  CAS  Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1990) Locustatachykinin I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS Lett 261(2):397–401. doi:0014-5793(90)80601-E[pii]

    Article  PubMed  CAS  Google Scholar 

  • Schoofs L, Holman GM, Proost P, Van Damme J, Hayes TK, De Loof A (1992) Locustakinin, a novel myotropic peptide from Locusta migratoria, isolation, primary structure and synthesis. Regul Pept 37(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Bryja V (2007) The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28(10):518–525. doi:S0165-6147(07)00208-8[pii]10.1016/j.tips.2007.09.001[doi]

    Article  PubMed  CAS  Google Scholar 

  • Sellami A, Agricola HJ, Veenstra JA (2011) Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPB5, a hormone with homology to LH, FSH and TSH. Gen Comp Endocrinol 170(3):582–588. doi:S0016-6480(10)00404-1[pii]10.1016/j.ygcen.2010.11.015

    Article  PubMed  CAS  Google Scholar 

  • Shapiro RA, Wakimoto BT, Subers EM, Nathanson NM (1989) Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci USA 86(22):9039–9043

    Article  PubMed  CAS  Google Scholar 

  • Soehler S, Neupert S, Predel R, Stengl M (2008) Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 332(2):257–269. doi:10.1007/s00441-008-0585-9

    Article  PubMed  CAS  Google Scholar 

  • Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25(26):6145–6155. doi:25/26/6145[pii]10.1523/JNEUROSCI.1005-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Stables J, Green A, Marshall F, Fraser N, Knight E, Sautel M, Milligan G, Lee M, Rees S (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252(1):115–126. doi:S0003-2697(97)92308-3[pii]10.1006/abio.1997.2308

    Article  PubMed  CAS  Google Scholar 

  • Stafflinger E, Hansen KK, Hauser F, Schneider M, Cazzamali G, Williamson M, Grimmelikhuijzen CJ (2008) Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci USA 105(9):3262–3267. doi:0710897105[pii]10.1073/pnas.0710897105

    Article  PubMed  CAS  Google Scholar 

  • Starratt AN, Brown BE (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci 17(8):1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Staubli F, Jorgensen TJ, Cazzamali G, Williamson M, Lenz C, Sondergaard L, Roepstorff P, Grimmelikhuijzen CJ (2002) Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 99(6):3446–3451. doi:10.1073/pnas.05255649999/6/3446[pii]

    Article  PubMed  CAS  Google Scholar 

  • Sudo S, Kuwabara Y, Park JI, Hsu SY, Hsueh AJ (2005) Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology 146(8):3596–3604. doi:en.2005-0317[pii]10.1210/en.2005-0317

    Article  PubMed  CAS  Google Scholar 

  • Sugamori KS, Demchyshyn LL, McConkey F, Forte MA, Niznik HB (1995) A primordial dopamine D1 like adenylyl cyclase-linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines. FEBS Lett 362(2):131–138. doi:0014-5793(95)00224-W[pii]

    Article  PubMed  CAS  Google Scholar 

  • Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352(2):305–310. doi:S0006-291X(06)02461-2[pii]10.1016/j.bbrc.2006.11.030

    Article  PubMed  CAS  Google Scholar 

  • Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell Mol Life Sci 67(14):2467–2479. doi:10.1007/s00018-010-0350-6

    Article  PubMed  CAS  Google Scholar 

  • The HoneyBee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443(7114):931–949

    Article  CAS  Google Scholar 

  • The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313. doi:10.1371/journal.pbio.1000313

    Article  CAS  Google Scholar 

  • The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1036–1045. doi:S0965-1748(08)00209-9[pii]10.1016/j.ibmb.2008.11.004

    Article  CAS  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332. doi:10.1146/annurev.physiol.010908.163209

    Article  PubMed  CAS  Google Scholar 

  • Truman JW (2005) Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology. Vitam Horm 73:1–30. doi:S0083-6729(05)73001-6[pii]10.1016/S0083-6729(05)73001-6[doi]

    Article  PubMed  CAS  Google Scholar 

  • Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250(2):231–234. doi:0014-5793(89)80727-6[pii]

    Article  PubMed  CAS  Google Scholar 

  • Veenstra JA (2009) Does corazonin signal nutritional stress in insects? Insect Biochem Mol Biol 39(11):755–762. doi:S0965-1748(09)00138-6[pii]10.1016/j.ibmb.2009.09.008

    Article  PubMed  CAS  Google Scholar 

  • Verlinden H, Vleugels R, Marchal E, Badisco L, Tobback J, Pfluger HJ, Blenau W, Vanden Broeck J (2010) The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). J Insect Physiol 56(8):868–875. doi: S0022-1910(10)00068-5[pii]10.1016/j.jinsphys.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  • Von Nickisch-Rosenegk E, Krieger J, Kubick S, Laage R, Strobel J, Strotmann J, Breer H (1996) Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). Insect Biochem Mol Biol 26(8–9):817–827

    Article  Google Scholar 

  • Wei Z, Baggerman G, Nachman RJ, Goldsworthy G, Verhaert P, De Loof A, Schoofs L (2000) Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. J Insect Physiol 46(9):1259–1265. doi:S0022191000000469[pii]

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJ, Kitts P, Lynch JA, Murphy T, Oliveira DC, Smith CD, Van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MM, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Grunder S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HCt, Hurst GD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM Jr, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FM, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu LL, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schluns H, Schmitt T, Schneider M, Schuler A, Schurko AM, Shuker DM, Simoes ZL, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327(5963):343–348. doi:327/5963/343[pii]10.1126/science.1178028

    Article  PubMed  CAS  Google Scholar 

  • Wicher D, Derst C, Gautier H, Lapied B, Heinemann SH, Agricola HJ (2007) The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity. Front Cell Neurosci 1:3. doi:10.3389/neuro.03.003.2007

    Article  PubMed  Google Scholar 

  • Winther AM, Acebes A, Ferrus A (2006) Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 31(3):399–406. doi:S1044-7431(05)00253-8[pii]10.1016/j.mcn.2005.10.010

    Article  PubMed  CAS  Google Scholar 

  • Witz P, Amlaiky N, Plassat JL, Maroteaux L, Borrelli E, Hen R (1990) Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc Natl Acad Sci USA 87(22):8940–8944

    Article  PubMed  CAS  Google Scholar 

  • Woodhead AP, Stay B, Seidel SL, Khan MA, Tobe SS (1989) Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis. Proc Natl Acad Sci USA 86(15):5997–6001

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39(1):147–161. doi:S0896627303003969[pii]

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Zhao Z, Shen P (2005) Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nat Neurosci 8(10):1350–1355. doi:nn1540[pii]10.1038/nn1540

    Article  PubMed  CAS  Google Scholar 

  • Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451(7174):33–37. doi:nature06483[pii]10.1038/nature06483

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research in Palli laboratory was supported by the National Science Foundation (IBN0421856), the National Institute of Health (GM070559-07), and the National Research Initiative of the USDA-NIFA (2011-67013-30143). This report is contribution number 11-08-075 from the Kentucky Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bai, H., Palli, S.R. (2013). G Protein-Coupled Receptors as Target Sites for Insecticide Discovery. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_4

Download citation

Publish with us

Policies and ethics