Skip to main content

Juvenile Hormone Biosynthetic Enzymes as Targets for Insecticide Discovery

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests

Abstract

Juvenile hormone (JH) plays important roles in insect morphogenesis and reproduction. For this reason, interfering with its biosynthesis has long been considered a promising strategy for the development of target-specific insecticides. Although several inhibitors of JH biosynthetic enzymes have been developed, none have yet been used operationally for the management of insect pests. However, recent progress in the fields of molecular biology and structural bioinformatics has made it possible to clone and characterize key JH biosynthetic enzymes, opening the way to the rational design of highly specific and effective enzyme inhibitors. In addition, the discovery of insect-produced peptides that inhibit JH biosynthesis, the allatostatins, has led to the development of peptide analogs that inhibit JH biosynthesis in vivo, offering an alternative approach for interfering with JH production. This chapter provides an overview of the JH biosynthetic pathway as well as a synthesis of both early and recent work on the development of inhibitors of JH biosynthesis. We also review recent work aimed at the cloning and characterization of JH biosynthetic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audsley N, Matthews HJ, Price NR, Weaver RJ (2008) Allatoregulatory peptides in Lepidoptera, structures, distribution and functions. J Insect Physiol 54:969–980

    PubMed  CAS  Google Scholar 

  • [BAG] Biology Analysis Group (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Google Scholar 

  • Baker FC, Lee E, Bergot BJ, Schooley DA (1981) Isomerization of isopentenyl pyrophosphate and homoisopentenyl pyrophosphate by Manduca sexta corpora cardiaca-corpora allata ­homogenates. In: Pratt GE, Brooks GT (eds) Juvenile hormone biochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Baker FC, Mauchamp B, Tsai LW, Schooley DA (1983) Farnesol and farnesal dehydrogenase(s) in corpora allata of the tobacco hornworm moth, Manduca sexta. J Lipid Res 24:1586–1594

    PubMed  CAS  Google Scholar 

  • Baker FC, Miller CA, Tsai LW, Jamieson GC, Cerf DC, Schooley DA (1986) The effect of juvenoids, anti juvenile hormone agents, and several intermediates of juvenile hormone ­biosynthesis on the in vivo juvenile hormone levels in Manduca sexta larvae. Insect Biochem 16:741–747

    CAS  Google Scholar 

  • Bergot BJ, Jamieson GC, Ratcliff MA, Schooley DA (1980) JH zero: new naturally occurring insect juvenile hormone from developing embryos of the tobacco hornworm. Science 210:336–338

    PubMed  CAS  Google Scholar 

  • Bhaskaran G, Sparagana SP, Barrera P, Dahm KH (1986) Change in corpus allatum function during metamorphosis of the tobacco hornworm Manduca sexta: regulation at the terminal step in juvenile hormone biosynthesis. Arch Insect Biochem Physiol 3:321–338

    CAS  Google Scholar 

  • Bowers WS, Ohta T, Cleere JS, Marsella PA (1976) Discovery of insect anti-juvenile hormones in plants. Science 193:542–547

    PubMed  CAS  Google Scholar 

  • Brooks GT, McCaffery AR (1990) The precocene antijuvenile hormones (allatotoxins): a case history in insect toxicology. In: McCaffery AR, Wilson ID (eds) Chromatography and isolation of insect hormones and pheromones. Plenum Press, New York

    Google Scholar 

  • Burtenshaw SM, Su PP, Zhang JR, Tobe SS, Dayton L, Bendena WG (2008) A putative farnesoic acid O-methyltransferase (FAMeT) orthologue in Drosophila melanogaster (CG10527): relationship to juvenile hormone biosynthesis? Peptides 29:242–251

    PubMed  CAS  Google Scholar 

  • Cantín Á, Moya P, Castillo MA, Primo J, Miranda MA, Primo-Yúfera E (1999) Isolation and synthesis of N-(2-methyl-3-oxodec-8-enoyl)-2-pyrroline and 2-(hept-5-enyl)-3-methyl-4-oxo-6,7,8,8a-tetrahydro-4H-pyrrolo[2,1-b]1,3-oxazine – two new fungal metabolites with in vivo anti-juvenile-hormone and insecticidal activity. Eur J Org Chem 1:221–226

    Google Scholar 

  • Cao L, Zhang P, Grant DF (2009) An insect farnesyl phosphatase homologous to the N-terminal domain of soluble epoxide hydrolase. Biochem Biophys Res Commun 380:188–192

    PubMed  CAS  Google Scholar 

  • Carney RL, Brown TL (1989) US Patent 4,877,899

    Google Scholar 

  • Castillo M, Moya P, Couillaud F, Garcerá MD, Martínez-Pardo R (1998) A heterocyclic oxime from a fungus with anti-juvenile hormone activity. Arch Insect Biochem Physiol 37:287–294

    CAS  Google Scholar 

  • Coast GM, Schooley DA (2011) Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides 32:620–631

    PubMed  CAS  Google Scholar 

  • Cromartie TH, Fisher KJ, Grossman JN (1991) Discovery of a novel site of action for herbicidal bisphosphonates. Pestic Biochem Physiol 63:114–126

    Google Scholar 

  • Cusson M (2004) Juvenile hormone. In: Capinera JL (ed) Encyclopedia of entomology. Kluwer, Norwell, MA, USA

    Google Scholar 

  • Cusson M, Le Page A, McNeil JN, Tobe SS (1996) Rate of isoleucine metabolism in lepidopteran corpora allata: regulation of the proportion of juvenile hormone homologs released. Insect Biochem Mol Biol 26:195–201

    CAS  Google Scholar 

  • Cusson M, Béliveau C, Sen SE, Vandermoten S, Rutledge RJ, Stewart D, Francis F, Haubruge É, Rehse P, Huggins DJ, Dowling APG, Grant GH (2006) Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins 65:742–758

    PubMed  CAS  Google Scholar 

  • Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K, Namiki T, Uchino K, Banno Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada T, Shinoda T (2012) Prococious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet 8:e1002486

    PubMed  CAS  Google Scholar 

  • Defelipe LA, Dolghih E, Roitberg AE, Nouzova M, Mayoral JG, Noriega FG, Turjanski AG (2011) Juvenile hormone synthesis: “esterify then epoxidize” or “epoxidize then esterify”? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem Mol Biol 41:228–235

    PubMed  CAS  Google Scholar 

  • Feyereisen R, Pratt GE, Hamnett AF (1981) Enzymic synthesis of juvenile hormone in locust corpora allata: evidence for a microsomal cytochrome P-450 linked methyl farnesoate epoxidase. Eur J Biochem 118:231–238

    PubMed  CAS  Google Scholar 

  • Feyereisen R, Farnsworth DE, Prickett KS, de Montellano PR Ortiz (1985) Suicidal destruction of cytochrome P-450 in the design of inhibitors of insect juvenile hormone biosynthesis. In: Hedin PA, Cutler HG, Hammock BD, Menn JJ, Moreland DE, Plimmer JR (eds) Bioregulators for pest control, vol 276, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Fujita N, Furuta K, Shirahashi H, Hong S, Shiotsuki T, Kuwano E (2005) Synthesis and ­anti-juvenile hormone activity of ethyl 4-[2-(6-methyl-3-pyridyloxy)alkyloxy]benzoates. J Pestic Sci 30:192–198

    CAS  Google Scholar 

  • Furuta K, Shirahashi H, Ashibe K, Yamashita H, Nishikawa M, Fujita N, Yamada N, Kuwano E (2006) Synthesis and anti-juvenile hormone activity of alkyl 4-(2-phenoxyalkyloxy)benzoates and related compounds. J Fac Agric Kyushu Univ 51:303–308

    CAS  Google Scholar 

  • Goodman WG, Cusson M (2012) The juvenile hormones. In: Gilbert LI (ed) Insect endocrinology. Elsevier, London

    Google Scholar 

  • Hammock BD (1975) NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach Blaberus giganteus L. Life Sci 17:323–328

    PubMed  CAS  Google Scholar 

  • Hammock BD, Mumby SM (1978) Inhibition of epoxidation of methyl farnesoate to juvenile ­hormone III by cockroach corpus allatum homogenates. Pestic Biochem Physiol 9:39–47

    CAS  Google Scholar 

  • Hammond AH, Fry JR (1996) Effects of culture duration, cytochrome P-450 inhibition and glutathione depletion on toxicity of diverse xenobiotics. Toxicol In Vitro 10:315–321

    PubMed  CAS  Google Scholar 

  • Hamnett AF, Pratt GE, Stott KM, Jennings RC (1981) The use of radio HRLC in the identification of the natural substrate of the O-methyl transferase and substrate utilization by the enzyme. Dev Endocrinol 15:93–105

    CAS  Google Scholar 

  • Harshman LG, Song KD, Casas J, Shuurmans A, Kuwano E, Kachman SD, Riddiford LM, Hammock BD (2010) Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: juvenile hormone III, bisepoxide JH III and methyl farnesoates. J Insect Physiol 56:1465–1470

    PubMed  CAS  Google Scholar 

  • Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA 101:4024–4029

    PubMed  CAS  Google Scholar 

  • [HGSC] Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Google Scholar 

  • Hiruma K, Yagi S, Endo A (1983) ML-236B (Compactin) as an inhibitor of juvenile hormone biosynthesis. J Appl Entomol Zool 18:111–115

    CAS  Google Scholar 

  • Holford KC, Edwards KA, Bendena WG, Tobe SS, Wang Z, Borst DW (2004) Purification and characterization of a mandibular organ protein from the American lobster, Homarus americanus: a putative farnesoic acid O-methyltransferase. Insect Biochem Mol Biol 34:785–798

    PubMed  CAS  Google Scholar 

  • Hui JHL, Hayward A, Bendena WG, Takahashi T, Tobe SS (2010) Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. Peptides 31:451–455

    PubMed  CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 85:2113–2117

    CAS  Google Scholar 

  • Ishiguro H, Fujita N, Kim IH, Shiotsuki T, Kuwano E (2003) Ethyl 4-[2-(6-methyl-3-pyridyloxy)butyloxy]benzoate, a novel anti-juvenile hormone agent. Biosci Biotechnol Biochem 67:2045–2047

    PubMed  CAS  Google Scholar 

  • Jaya PB, Dubey NK (2011) Evaluation of chemically characterised essential oils of Coleus aromaticus, Hyptis suaveolens and Ageratum conyzoides against storage fungi and aflatoxin contamination of food commodities. Int J Food Sci Technol 46:754–760

    CAS  Google Scholar 

  • Joly A, Edwards PA (1993) Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem 268:26983–26989

    PubMed  CAS  Google Scholar 

  • Jones G, Jones D, Li X, Tang L, Ye L, Teal P, Riddiford LM, Sandifer C, Borovsky D, Martin JR (2010) Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster. J Insect Physiol 56:1456–1464

    PubMed  CAS  Google Scholar 

  • Judy KJ, Schooley DA, Dunham LL, Hall MS, Bergot J, Siddall JB (1973) Isolation, structure, and absolute configuration of a new natural insect juvenile hormone from Manduca sexta. Proc Natl Acad Sci USA 70:1509–1513

    PubMed  CAS  Google Scholar 

  • Kai Zp, Huang J, Xie Y, Tobe SS, Ling Y, Zhang L, Yc Z, Xl Y (2010) Synthesis, biological activity, and hologram quantitative structure−activity relationships of novel allatostatin analogues. J Agric Food Chem 58:2652–2658

    PubMed  CAS  Google Scholar 

  • Kai Zp, Xie Y, Huang J, Tobe SS, Jr Z, Ling Y, Zhang L, Yc Z, Xl Y (2011) Peptidomimetics in the discovery of new insect growth regulators: studies on the structure−activity relationships of the core pentapeptide region of allatostatins. J Agric Food Chem 59:2478–2485

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Furuta K, Kuwano E, Hiruma K (2011) An anti-juvenile hormone agent, ethyl 4-(2-benzylhexyloxy)benzoate, inhibits juvenile hormone synthesis through the suppression of the transcription of juvenile hormone biosynthetic enzymes in the corpora allata in Bombyx mori. Insect Biochem Mol Biol 41:788–794

    PubMed  CAS  Google Scholar 

  • Kiguchi K, Mori T, Akai H (1984) Effects of anti-juvenile hormone “ETB” on the development and metamorphosis of the silkworm, Bombyx mori. J Insect Physiol 30:499–506

    CAS  Google Scholar 

  • Kinjoh T, Kaneko Y, Itoyama K, Mita K, Hiruma K, Shinoda T (2007) Control of juvenile ­hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and ­assessment of their developmental expression in the corpora allata. Insect Biochem Mol Biol 37:807–818

    Google Scholar 

  • Kondo K, Terada O, Oshima K, Mori Y, Mochida K (1977) β-Phenoxy- or substituted ­phenoxyethanol compounds. US Patent 4016186

    Google Scholar 

  • Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H (2009) Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett 11:5234–5237

    PubMed  CAS  Google Scholar 

  • Koyama T, Ogura K, Seto S (1973) Studies on isopentenyl pyrophosphate isomerase with artificial substrates. J Biol Chem 248:8043–8051

    PubMed  CAS  Google Scholar 

  • Koyama T, Matsubara M, Ogura K (1985) Isoprenoid enzyme systems of silkworm. II. Formation of the juvenile hormone skeletons by farnesyl pyrophosphate synthase II. J Biochem 98:457–463

    PubMed  CAS  Google Scholar 

  • Kreienkamp HJ, Larusson HJ, Witte I, Roeder T, Birgül N, Hönck HH, Harder S, Ellinghausen G, Buck F, Richter D (2002) Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and −2, from Drosophila melanogaster and their ligands by reverse pharmacology. J Biol Chem 277:39937–39943

    PubMed  CAS  Google Scholar 

  • Kuwano E, Eto M (1986) Anti-juvenile hormone effects of an imidazole compound (KK-42) in different larval instars of Bombyx mori. Agric Biol Chem 50:2919–2920

    CAS  Google Scholar 

  • Kuwano E, Takeya R, Eto M (1983) Terpenoid imidazoles: new anti-juvenile hormones. Agric Biol Chem 47:921–923

    CAS  Google Scholar 

  • Lewis MJ, Prosser IM, Mohib A, Field LM (2008) Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone ­biosynthesis. Insect Mol Biol 17:437–443

    PubMed  CAS  Google Scholar 

  • Ly VT, Brock B (2011) Effects of CYP inhibitors on precocene I metabolism and toxicity in rat liver slices. Chem Biol Interact 193:109–118

    PubMed  CAS  Google Scholar 

  • Ma JY, Sun XF, Zhang YL, Li ZX (2010) Molecular cloning and characterization of a ­prenyltransferase from the cotton aphid, Aphis gossypii. Insect Biochem Mol Biol 40:552–561

    PubMed  CAS  Google Scholar 

  • Marchal E, Zhang JR, Badisco L, Verlinden H, Hult EF, Wielendaele PV, Yagi KJ, Tobe SS, Broeck JV (2011) Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 41:219–227

    PubMed  CAS  Google Scholar 

  • Mayoral JG, Nouzova M, Navare A, Noriega FG (2009a) NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. Proc Natl Acad Sci USA 106:21091–21096

    PubMed  CAS  Google Scholar 

  • Mayoral JM, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG (2009b) Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the ­corpora allata of mosquitoes. Insect Biochem Mol Biol 39:31–37

    PubMed  CAS  Google Scholar 

  • Meyer AS, Schneiderman HA, Hanzmann E, Ko J (1968) The two juvenile hormones from the cecropia silk moth. Proc Natl Acad Sci USA 60:853–860

    PubMed  CAS  Google Scholar 

  • Minakuchi C, Namiki T, Yoshiyama M, Shinoda T (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275:2919–2931

    PubMed  CAS  Google Scholar 

  • Mita K, Kosahara M, Sasaki S et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    PubMed  CAS  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    PubMed  CAS  Google Scholar 

  • Moshitzky P, Applebaum SW (1995) Pathway and regulation of JH III-bisepoxide biosynthesis in adult Drosophila melanogaster corpus allatum. Arch Insect Biochem Physiol 30:225–237

    PubMed  CAS  Google Scholar 

  • Nachman RJ, Moyna G, Williams HJ, Tobe SS, Scott AI (1998) Synthesis, biological activity, and conformational studies of insect allatostatin neuropeptide analogs incorporating ­turn-promoting moieties. Bioorg Med Chem 6:1379–1388

    PubMed  CAS  Google Scholar 

  • Nachman RJ, Garside CS, Tobe SS (1999) Hemolymph and tissue-bound peptidase-resistant ­analogs of the insect allatostatins. Peptides 20:23–29

    PubMed  CAS  Google Scholar 

  • Nagaraju GPC (2007) Is methyl farnesoate a crustacean hormone? Aquaculture 272:39–54

    CAS  Google Scholar 

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    PubMed  Google Scholar 

  • Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38:714–720

    PubMed  CAS  Google Scholar 

  • Noriega FG, Ribeiro JMC, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R (2006) Genomic endocrinology of insect juvenile hormone biosynthesis. Insect Biochem Mol Biol 36:366–374

    PubMed  CAS  Google Scholar 

  • Oldfield E (2010) Targeting isoprenoid biosynthesis for drug discovery: bench to bedside. Acc Chem Res 43:1216–1226

    PubMed  CAS  Google Scholar 

  • Piulachs MD, Vilaplana L, Bartolome JM, Carreno C, Martin D, Gonzalez-Muniz R, Herranz R, Garcia-Lopez MT, Andreu D, Belles X (1997) Ketomethylene and methyleneamino ­pseudopeptide analogs of insect allatostatins inhibit juvenile hormone and vitellogenin ­production in the cockroach Blattella germanica. Insect Biochem Mol Biol 27:851–858

    PubMed  CAS  Google Scholar 

  • Quistad GB, Cerf DC, Schooley DA, Staal GB (1981) Fluoromevalonate acts as an inhibitor of insect juvenile hormone biosynthesis. Nature 289:176–177

    CAS  Google Scholar 

  • Quistad GB, Cerf DC, Kramer SJ, Bergot BJ, Schooley DA (1985) Design of novel insect ­anti-juvenile hormones: allylic alcohol derivatives. J Agric Food Chem 33:47–50

    CAS  Google Scholar 

  • Reardon JE, Abeles RH (1987) Inhibition of cholesterol biosynthesis by fluorinated mevalonate analogs. Biochemistry 26:4717–4722

    PubMed  CAS  Google Scholar 

  • Richard DS, Applebaum SW, Sliter TJ, Baker FC, Schooley DA, Reuter CC, Henrich VC, Gilbert LI (1989) Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster – a putative juvenile hormone in the higher Diptera. Proc Natl Acad Sci USA 86:1421–1425

    PubMed  CAS  Google Scholar 

  • Röller H, Dahm DH, Sweeley CC, Trost BM (1967) The structure of the juvenile hormone. Angew Chem Int Ed 6:179–180

    Google Scholar 

  • Schooley DA, Baker FC (1985) Juvenile hormone biosynthesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 7. Pergamon Press, Oxford

    Google Scholar 

  • Schooley DA, Edwards JP (1996) Anti juvenile hormones: from precocenes to peptide. Brighton Crop Prot Conf Pests Dis 3:1029–1038

    Google Scholar 

  • Schooley DA, Judy KJ, Bergot BJ, Hall MS, Siddall JB (1973) Biosynthesis of juvenile hormones of Manduca sexta: labeling pattern from mevalonate, propionate and acetate. Proc Natl Acad Sci USA 70:2921–2925

    PubMed  CAS  Google Scholar 

  • Sen SE, Garvin GM (1995) Substrate requirements for lepidopteran farnesol dehydrogenase. J Agric Food Chem 43:820–825

    CAS  Google Scholar 

  • Sen SE, Ewing GJ, Thurston N (1996) Characterization of lepidopteran prenyltransferase in Manduca sexta corpora allata. Arch Insect Biochem Physiol 32:315–332

    CAS  Google Scholar 

  • Sen SE, Hitchcock JR, Jordan JL, Richard T (2006) Juvenile hormone biosynthesis in M. sexta: substrate specificity of insect prenyltransferase utilizing homologous diphosphate analogs. Insect Biochem Mol Biol 36:827–834

    PubMed  CAS  Google Scholar 

  • Sen SE, Cusson M, Trobaugh C, Béliveau C, Richard T, Graham W, Mimms A, Roberts G (2007) Purification, properties and heteromeric association of type-1 and type-2 lepidopteran farnesyl diphosphate synthases. Insect Biochem Mol Biol 37:819–828

    PubMed  CAS  Google Scholar 

  • Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100:11986–11991

    PubMed  CAS  Google Scholar 

  • Song L, Poulter CD (1994) Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of ­residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA 91:3044–3048

    PubMed  CAS  Google Scholar 

  • Sparks TC, Wing KD, Hammock BD (1979) Effects of the anti-hormone-hormone mimic ETB on the induction of insect juvenile hormone esterase in Trichoplusia ni. Life Sci 25:445–450

    PubMed  CAS  Google Scholar 

  • Sperry AE, Sen SE (2001) Farnesol oxidation in insects: evidence that the biosynthesis of insect juvenile hormone is mediated by a specific alcohol oxidase. Insect Biochem Mol Biol 31:171–178

    PubMed  CAS  Google Scholar 

  • Staal GB (1976) Insect control with insect growth regulators based on insect hormones. In: ­Marini-Bettólo GB (ed) Natural products and the protection of plants. Pontifica Academia Scientiarum, Rome

    Google Scholar 

  • Staal GB (1986) Anti juvenile hormone agents. Annu Rev Entomol 31:391–429

    CAS  Google Scholar 

  • Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and ­crustaceans. Ann Rev Entomol 52:277–299

    PubMed  CAS  Google Scholar 

  • Sutherland TD, Feyereisen R (1996) Target of cockroach allatostatin in the pathway of juvenile hormone biosynthesis. Mol Cell Endocrinol 120:115–123

    PubMed  CAS  Google Scholar 

  • Tan A, Tanaka H, Tamura T, Shiotsuki T (2005) Precocious metamorphosis in transgenic ­silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA 102:11751–11756

    PubMed  CAS  Google Scholar 

  • Tobe SS, Bendena WG (2006) Allatostatins in the insects. In: Kastin A (ed) Handbook of ­biologically active peptides. Academic, New York

    Google Scholar 

  • Tobe SS, Pratt GE (1974) Dependence of juvenile hormone release from corpus allatum on ­intraglandular content. Nature 252:474–476

    PubMed  CAS  Google Scholar 

  • Tobe SS, Stay B (1985) Structure and function of the corpus allatum. Adv Insect Physiol 18:303–438

    Google Scholar 

  • Ueda H, Shinoda T, Hiruma K (2009) Spatial expression of the mevalonate enzymes involved in ­juvenile hormone biosynthesis in the corpora allata in Bombyx mori. J Insect Physiol 55:798–804

    PubMed  CAS  Google Scholar 

  • Unnithan GC, Andersen JF, Hisano T, Kuwano E, Feyereisen R (1995) Inhibition of juvenile ­hormone biosynthesis and methyl farnesoate epoxidase activity by 1,5-disubstituted ­imidazoles in the cockroach, Diploptera punctata. Pestic Sci 43:13–19

    CAS  Google Scholar 

  • Vandermoten S, Charloteaux B, Santini S, Senm SE, Béliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M, Haubruge É (2008) Characterization of a novel aphid ­prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Lett 582:1928–1934

    PubMed  CAS  Google Scholar 

  • Vandermoten S, Haubruge É, Cusson M (2009a) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695

    PubMed  CAS  Google Scholar 

  • Vandermoten S, Santini S, Haubruge É, Francis F, Brasseur R, Cusson M, Charloteaux B (2009b) Structural features conferring dual GPP/FPP synthase activity to an aphid prenyltransferase. Insect Biochem Mol Biol 39:707–716

    PubMed  CAS  Google Scholar 

  • Watson JA, Have CM, Lobos DV, Baker FC, Morrow CJ (1985) Isoprenoid synthesis in isolated embryonic Drosophila cells. Sterol-independent regulatory signal molecule is distal to ­isopentenyl 1-pyrophosphates. J Biol Chem 260:14083–14091

    PubMed  CAS  Google Scholar 

  • Weaver RJ, Audsley N (2009) Neuropeptide regulators of juvenile hormone synthesis. Trends Comp Endocrinol Neurobiol 1163:316–329

    CAS  Google Scholar 

  • Williams CM (1967) Third-generation pesticides. Sci Am 217:13–17

    PubMed  CAS  Google Scholar 

  • Woodhead AP, Stay B, Seidel SL, Khan MA, Tobe SS (1989) Primary structure of four ­allatostatins: neuropeptide inhibitors of juvenile hormone biosynthesis. Proc Natl Acad Sci USA 86:5997–6001

    PubMed  CAS  Google Scholar 

  • Yungen M, Bharathi D (2009) Effect of anti-juvenile hormone agent, KK-42 on the incorporation rate of radioactive glycine and biosynthesis of silk proteins of silkworm, Bombyx mori L. Toxicol Environ Chem 91:485–491

    CAS  Google Scholar 

  • Zhan S, Merlin C, Boore JL, Reppert SM (2011) The Monarch butterfly genome yields insights into long-distance migration. Cell 147:1171–1185

    PubMed  CAS  Google Scholar 

  • Zhang YL, Li ZX (2008) Two different farnesyl diphosphate synthase genes exist in the genome of the green peach aphid, Myzus persicae. Genome 51:501–510

    PubMed  CAS  Google Scholar 

  • Zhang Y, Cao R, Yin F et al (2009) Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an x-ray and NMR investigation. J Am Chem Soc 131:5153–5162

    PubMed  CAS  Google Scholar 

  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67:175–182

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments on an earlier version of the manuscript. Some of the research reviewed in this chapter was supported by grants from the Natural Sciences and Engineering Research Council of Canada and Natural Resources Canada to M.C. and from the National Science Foundation to S.E.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Her Majesty the Queen in Right of Canada, represented by the Minister of Natural Resources

About this chapter

Cite this chapter

Cusson, M., Sen, S.E., Shinoda, T. (2013). Juvenile Hormone Biosynthetic Enzymes as Targets for Insecticide Discovery. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_3

Download citation

Publish with us

Policies and ethics