Persuading Computers to Act More Like Brains
Abstract
Convergent advances in neural modeling, neuroinformatics, neuromorphic engineering, materials science, and computer science will soon enable the development and manufacture of novel computer architectures, including those based on memristive technologies that seek to emulate biological brain structures. A new computational platform, Cog Ex Machina, is a flexible modeling tool that enables a variety of biological-scale neuromorphic algorithms to be implemented on heterogeneous processors, including both conventional and neuromorphic hardware. Cog Ex Machina is specifically designed to leverage the upcoming introduction of dense memristive memories close to computing cores. The MoNETA (Modular Neural Exploring Traveling Agent) model is comprised of such algorithms to generate complex behaviors based on functionalities that include perception, motivation, decision-making, and navigation. MoNETA is being developed with Cog Ex Machina to exploit new hardware devices and their capabilities as well as to demonstrate intelligent, autonomous behaviors in both virtual animats and robots. These innovations in hardware, software, and brain modeling will not only advance our understanding of how to build adaptive, simulated, or robotic agents, but will also create innovative technological applications with major impacts on general-purpose and high-performance computing.
Keywords
Hewlett Packard Chromatic Feature Biological Brain Information Information Silicon NeuronNotes
Acknowledgments
The work was supported in part by the Center of Excellence for Learning in Education, Science and Technology (CELEST), a National Science Foundation Science of Learning Center (NSF SBE-0354378 and NSF OMA-0835976). This work was also partially funded by the DARPA SyNAPSE program, contract HR0011-09-3-0001. The views, opinions, and/or findings contained in this chapter are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Department of Defense, or the National Science Foundation.
References
- 1.Abrahamsen J, Hafliger P, Lande T (2004) A time domain winner-take-all network of integrate-and-fire neurons. IEEE Int Symp Circuits Syst 5:361–364Google Scholar
- 2.Afifi A, Ayatollahi A, Raissi F (2009) STDP implementation using memristive nano device in CMOS-Nano neuromorphic networks. IEICE Electron Express 6(3):148–153CrossRefGoogle Scholar
- 3.Ames H, Mingolla E, Sohail A, Chandler B, Gorchetchnikov A, Léveillé J, Livitz G, Versace M (2011) The Animat—New frontiers in whole-brain modeling. IEEE NEST (in press)Google Scholar
- 4.Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. Proceedings of the conference on high performance computing networking, storage, and analysis, pp 1–12Google Scholar
- 5.Andreou AG, Meitzler RC, Strohben K, Boahen KA (1995) Analog VLSI neuromorphic image acquisition and pre-processing systems. Neural Net 8(7–8):1323–1347CrossRefGoogle Scholar
- 6.Argyrakis P, Hamilton A, Webb B, Zhang Y, Gonos T, Cheung, R (2007) Fabrication and characterization of a wind sensor for integration with neuron circuit. Microelectron Eng 84:1749–1753CrossRefGoogle Scholar
- 7.Arthur J, Boahen K (2006) Learning in silicon: timing is everything. In: Weiss Y, Scholkoph B, Platt J (eds) Advances in neural information processing systems, 18. MIT Press, Cambridge, pp 1–8Google Scholar
- 8.Bartolozzi C, Indiveri G (2007) Synpatic dynamics in analog VLSI. Neural Comput 19(10):2581–2603PubMedCrossRefGoogle Scholar
- 9.Basset DS, Greenfield DL, Meyer-Lindenberg A, Weinberg DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer networks. PLoS Comput Biol e1000748Google Scholar
- 10.Bernabe L, Serrano-Gotarredona T (2009) Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Precedings. http://precedings.nature.com (hdl:10101/npre.2009.3010.1)Google Scholar
- 11.Bernabe K (1999) A throughput-on-demand address-event transmitter for neuromorphic chips. Advanced Research in VLSI, pp 72–86Google Scholar
- 12.Boahen K (2007) Synchrony in silicon: the gamma rhythm. IEEE Trans Neural Netw 18(6):1815–1825PubMedCrossRefGoogle Scholar
- 13.Boahen K, Andreou A (1992) A contrast sensitive silicon retina with reciprocal synapses. Adv Neural Inf Process Syst 4:764–772Google Scholar
- 14.Brockman WH (1979) A simple electronic neuron model incorporating both active and passive responses. IEEE Trans Biomed Eng BME-26:635–639PubMedCrossRefGoogle Scholar
- 15.Brüderle D, Petrovici MA, Vogginger B, Ehrlich M, Pfeil T, Millner S, Grübl A, Wendt K, Müller E, Schwartz MO, de Oliveira DH, Jeltsch S, Fieres J, Schilling M, Müller P, Breitwieser O, Petkov V, Muller L, Davison AP, Krishnamurthy P, Kremkow J, Lundqvist M, Muller E, Partzsch J, Scholze S, Zühl L, Mayr C, Destexhe A, Diesmann M, Potjans TC, Lansner A, Schüffny R, Schemmel J, Meier K (2011) A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol Cybern 104(4–5):263–96PubMedCrossRefGoogle Scholar
- 16.Chan V, Liu S-C, Van Schaik A (2007) AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst 54:48–59CrossRefGoogle Scholar
- 17.Chicca E, Indiveri G, Douglas R (2004) An event based VLSI network of integrate-and-fire neurons. Proceedings of IEEE international symposium on circuits and systems, pp 357–360Google Scholar
- 18.Chicca E, Indiveri G, Douglas R (2007a) Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons. In: Scholkopf B, Platt, J, Hofmann, T (eds) Advances in neural information processing systems, 19. Neural Information Processing Systems Foundation, Cambridge, pp 257–264Google Scholar
- 19.Chicca E, Whatley AM, Dante V, Lichtsteiner P, Delbruck T, Del Giudice P, Douglas R, Indiveri G (2007b) A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity. IEEE Trans Circuits Syst 52(6):1049–1060Google Scholar
- 20.Choi TYU, Merolla PA, Arthur JV, Boahen KA, Shi BE (2005) Neuromorphic implementation of orientation hyper columns. IEEE Trans Circuits Syst 52(6):1049–1060CrossRefGoogle Scholar
- 21.Choi H, Jung H, Lee J, Yoon J, Park J, Seong D, Lee W, Hasan M, Jung GY, Hwang H (2009) An electrically modifiable synapse array of resistive switching memory. Nanotechnology 20(34):345201 (Epub)PubMedCrossRefGoogle Scholar
- 22.Chua LO (1971) Memristor—missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRefGoogle Scholar
- 23.Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223CrossRefGoogle Scholar
- 24.Costas-Santos J, Serrano-Gotarredona T, Serrano-Gotarredona R, Linares-Barranco B (2007) A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision systems. IEEE Trans Circuits Syst I 54:1444–1458CrossRefGoogle Scholar
- 25.Culurciello E, Etienne-Cummings R, Boahen KA (2003) A biomorphic digital image sensor. IEEE J Solid State Circuits 38:281–294CrossRefGoogle Scholar
- 26.Delbruck T, Mead C (1996) Analog VLSI transduction. Technical Report CNS Memo 30, California Institute of Technology and Computation and Neural Systems Program. Pasadena, CAGoogle Scholar
- 27.DeYoung MR, Findley RL, Fields C (1992) The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element. IEEE Trans Neural Netw 3(3):363–374CrossRefGoogle Scholar
- 28.Diorio C, Hasler P, Minch BA, Mead CA (1996) A single-transistor silicon synapse. IEEE Trans Electron Devices 43(11):1980–1982CrossRefGoogle Scholar
- 29.Douglas R Mahowald M (1995) Silicon neurons. In: Arbib M (ed) The handbook of brain theory and neural networks. MIT Press, Cambridg, pp 282–289Google Scholar
- 30.Douglas R, Mahowald M, Mead C (1995) Neuromorphic Analog VLSI. Annu Rev Neurosci 18:255–281PubMedCrossRefGoogle Scholar
- 31.Elias JG (1993) Artificial dendritic trees. Neural Comput 5(4):648–664CrossRefGoogle Scholar
- 32.Etienne-Cummings R, Van der Spiegel, J (1996) Neuromorphic vision sensors. Sens Actuators A Phys 56(1–2):19–29CrossRefGoogle Scholar
- 33.Faggin F, Mead C (1995) VLSI Implementation of Neural Networks. In An Introduction to Neural and Electronic Networks. Academic Press, San Diego, pp 275–292Google Scholar
- 34.Fitzhugh R (1966) An electronic model of the nerve membrane for demonstration purposes. J Appl Physiol 21:305–308PubMedGoogle Scholar
- 35.Folowosele F (2010) Neuromorphic systems: silicon neurons and neural arrays for emulating the nervous system. Neurdon. http://www.neurdon.com/2010/08/12/neuromorphic-systems-silicon-neurons-and-neural-arrays-for-emulating-the-nervous-system/Google Scholar
- 36.Folowosele F, Hamilton TJ, Etienne-Cummings R (2011) Silicon modeling of the Mihalaş--Niebur neuron. IEEE Trans Neural Netw 22(12):1915–1927Google Scholar
- 37.Fragniére E, van Schaik A, Vittoz EA (1997) Design of an analogue VLSI model of an active cochlea. Analog Integr Circuits and Signal Processing 12:19–35CrossRefGoogle Scholar
- 38.Furth P, Andreou AG (1995) A design framework for low power analog filter banks. IEEE Trans Circuits Syst 42(11):966–971CrossRefGoogle Scholar
- 39.Giulioni M, Camilleri P, Dante V, Badoni D, Indiveri G, Braun J, Del Giudice P (2008) A VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses. Proceedings of IEEE international conference on electronics, circuits and systems, pp 678–681Google Scholar
- 40.Glover M, Hamilton A, Smith LS (2002) Analogue VLSI leaky integrated-and-fire neurons and their use in a sound analysis system. Analog Integr Circuits Signal Processing 30(2):91–100CrossRefGoogle Scholar
- 41.Goldberg DH, Cauwenberghs G, Andreou AG (2001) Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Net 14:781–793CrossRefGoogle Scholar
- 42.Gorchetchnikov A, Hasselmo ME (2005) A biophysical implementation of a bidirectional graph search algorithm to solve multiple goal navigation tasks. Connect Sci 17(1–2):145–166CrossRefGoogle Scholar
- 43.Gorchetchnikov A, Versace, M, Ames H, Chandler B, Léveillé J, Livitz G, Mingolla E, Snider G, Amerson R, Carter D, Abdalla H, Qureshi MS (2011a) Review and unification of learning framework in Cog Ex Machina platform for memristive neuromorphic hardware. Proceedings of the international Joint Conference on neural networks, pp 2601–2608Google Scholar
- 44.Gorchetchnikov A, Léveillé J, Versace M, Ames HM, Livitz G, Chandler B, Mingolla E, Carter D, Amerson R, Abdalla H, Qureshi S, Snider G (2011b) MoNETA: massive parallel application of biological models navigating through virtual Morris water maze and beyond. BMC Neurosci 12(Suppl 1):310CrossRefGoogle Scholar
- 45.Grossberg S (1973) Contour enhancement, short-term memory, and constancies in reverberating neural networks. Stud Appl Math 52:213–257Google Scholar
- 46.Hafliger P (2007) Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans Neural Netw 18(2):551–572PubMedCrossRefGoogle Scholar
- 47.Hamilton TJ, Jin C, van Schaik A, Tapson J (2008) An active 2-D silicon cochlea. IEEE Trans Biomed Circuits Syst 2(1):30–43CrossRefGoogle Scholar
- 48.Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant squid axon of loligo. J Phys 116:449–472Google Scholar
- 49.Hsu D, Figueroa M, Diorio C (2002) Competitive learning with floating-gate circuits. IEEE Trans Neural Netw 13:732–744PubMedCrossRefGoogle Scholar
- 50.Indiveri G (1998) Analog VLSI model of locust DCMD neuron response for computation of object approach. In: Smith L, Hamilton A (eds) Neuromorphic systems: engineering silicon from neurobiology. World Scientific, Singapore, pp 47–60CrossRefGoogle Scholar
- 51.Indiveri G, Murer R, Kramer J (2001) Active vision using an analog VLSI model of selective attention. IEEE Trans Circuits Syst II 48(5):492–500CrossRefGoogle Scholar
- 52.Indiveri G, Chicca E, Douglas RJ (2004) A VLSI reconfigurable network of integrate-and-fire neurons with spike-based learning synapses. European symposium on artificial neural networks, pp 405–410Google Scholar
- 53.Indiveri G, Chicca E, Douglas RJ (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221PubMedCrossRefGoogle Scholar
- 54.Indiveri G, Chicca E, Douglas RJ (2009) Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognitive Comput 1:119–127CrossRefGoogle Scholar
- 55.Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu S-C, Dudek P, Häfliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saïghi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73PubMedGoogle Scholar
- 56.Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans PAMI 20:1254–1260CrossRefGoogle Scholar
- 57.Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamo-cortical systems. PNAS 105:3593–3598PubMedCrossRefGoogle Scholar
- 58.Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301PubMedCrossRefGoogle Scholar
- 59.Johnson RH, Hanna, GR (1969) Membrane model: a single transistor analog of excitable membrane. J Theor Biol 22:401–411PubMedCrossRefGoogle Scholar
- 60.Karplus WJ, Soroka WW (1959) Analog Methods: computation and Simulation. McGraw-Hill, New YorkGoogle Scholar
- 61.Kogge P (2011) The tops in FLOPS. IEEE Spectr 48(2):48–54CrossRefGoogle Scholar
- 62.Koickal TJ, Hamilton A, Tan SL, Covington JA, Gardner JW, Pearce TC (2005) Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Int Symp Circuits Syst 54:60–73Google Scholar
- 63.Lapique L (1907) Sur l’excitation electrique des nerfs. J Physiol 9:620–635Google Scholar
- 64.Lazzaro J, Mead C (1989a) Silicon modeling of pitch perception. Proc Natl Acad Sci USA 86(23):9597–9601CrossRefGoogle Scholar
- 65.Lazzaro J, Mead C (1989b) A silicon model of auditory localization. Neural Comput 1(1):47–57CrossRefGoogle Scholar
- 66.Lazzaro J, Wawrzynek J (1997) Speech recognition experiments with silicon auditory models. Analog Integr Circuits 13:37–51CrossRefGoogle Scholar
- 67.Léveillé J, Ames H, Chandler B, Gorchetchnikov A, Livitz G, Versace M Mingolla E (2011) Object recognition and localization in a virtual animat: large-scale implementation in dense memristive memory devices. Proceedings of the international joint conference on neural networksGoogle Scholar
- 68.Lewis ER (1968) An electronic model of the neuroelectric point process. Kybernetik 5:30–46PubMedCrossRefGoogle Scholar
- 69.Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 × 120db 15 μs latency asynchronous temporal contrast vision detector. IEEE J Solid-State Circuits 43(2):566–576CrossRefGoogle Scholar
- 70.Liu W, Andreou AG, Goldstein MH, Jr (1993a) Analog cochlear model for multire solution speech analysis. Adv Neural Inf Processing Syst 5:666–673Google Scholar
- 71.Liu W, Andreou AG, Goldstein MH, Jr (1993b) Voiced speech representation by an analog silicon model of the auditory periphery. IEEE Trans on Neural Net 3(3):477–487CrossRefGoogle Scholar
- 72.Liu S-C, Delbruck T (2010) Neuromorphic sensory systems. Curr Opin Neurobio 20:288–295CrossRefGoogle Scholar
- 73.Liu S-C, Kramer J, Indiveri G, Delbruck T, Douglas R (2002) Analog VLSI: circuits and principles. MIT Press, CambridgeGoogle Scholar
- 74.Liu S-C, Mesgarani N, Harris J, Hermansky H (2010) The use of spike-based representations for hardware auditory systems. IEEE International symposium on circuits and systems, pp 505–508Google Scholar
- 75.Livitz G, Ames H, Chandler B, Gorchetchnikov A, Léveillé J, Vasilkoski Z, Versace M, Mingolla E, Snider G, Amerson R, Carter D, Abdalla H, Qureshi MS (2011) Visually-guided adaptive robot (ViGuAR). Proceedings of the international joint conference on neural networks, pp 2944–2951Google Scholar
- 76.Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acoust 36(7):1119–1134CrossRefGoogle Scholar
- 77.Mahowald M, Douglas R (1991) A silicon neuron. Nature 354(6354):515–518PubMedCrossRefGoogle Scholar
- 78.Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160PubMedCrossRefGoogle Scholar
- 79.McKenzie A, Branch DW, Forsythe C, James CD (2010) Toward exascale computing through neuromorphic approaches. Sandia Report SAND2010-6312, Sandia National LaboratoriesGoogle Scholar
- 80.Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, BostonGoogle Scholar
- 81.Mead C, Mahowald MA (1988) A silicon model of early visual processing. Neural Netw 1(1):91–97CrossRefGoogle Scholar
- 82.Merolla PA, Arthur JV, Shi BE, Boahen KA (2007) Expandable networks for neuromorphic chips. IEEE Trans Circuits Syst I: Fundam Theory Appl 54(2):301–311CrossRefGoogle Scholar
- 83.Minch BA, Hasler P, Diorio C, Mead C (1995) A silicon axon. In: Tesauro G, Touretzky DS, Leen TK (eds) Adv Neural Inf Processing Syst 7. MIT Press, Cambridge, pp 739–746Google Scholar
- 84.Mitra S, Fusi S, Indiveri G (2009) Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Trans Biomed Circuits Syst 3(1):32–42CrossRefGoogle Scholar
- 85.Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):239–260CrossRefGoogle Scholar
- 86.Navaridas J, Lujan M, Miguel-Alonso J, Plana LA, Furber S (2009) Understanding the interconnection network of SpiNNaker. Proceedings of the international conference on supercomputing, p 286Google Scholar
- 87.Nogaret A, Lambert NJ, Bending SJ Austin J (2004) Artificial ion channels and spike computation in modulation-doped semiconductors. Europhys Lett 68(6):874–880CrossRefGoogle Scholar
- 88.Northmore DPM. Elias JG (1996) Spike train processing by a silicon neuromorph: the role of sub linear summation in dendrites. Neural Comput 8(6):1245–1265PubMedCrossRefGoogle Scholar
- 89.Oster M, Liu SC (2004) A winner-take-all spiking network with spiking inputs. Proceedings of 11th IEEE international conference on electronics, circuits, and systems, pp 1051–1058Google Scholar
- 90.Pearce TC (1997) Computational parallels between the biological olfactory pathway and its analogue ‘the electric nose’: sensor based machine olfaction. Biosystems 41(2):69–90PubMedCrossRefGoogle Scholar
- 91.Pearson M, Nibouche M, Gilhespy I, Gurney K, Melhuish C, Mitchison B, Pipe AG (2006) A hardware based implementation of a tactile sensory system for neuromorphic signal processing applications. Proceedings of IEEE international conference on acoustics, speech, and signal processing, p 4Google Scholar
- 92.Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106(7):074508CrossRefGoogle Scholar
- 93.Posch C, Matolin D, Wohlgenannt R (2010) A QVGA 143 dB DR asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression. ISSCC digest of technical papers, pp 400–401Google Scholar
- 94.Rasche C, Douglas RJ (2000) An improved silicon neuron. Analog Integr 23(3):227–236CrossRefGoogle Scholar
- 95.Rasche C, Douglas RJ (2001) Forward- and back propagation in a silicon dendrite. IEEE Trans Neural Netw 12(2):386–393PubMedCrossRefGoogle Scholar
- 96.Rasche C, Douglas RJ, Mahowald M (1998) Characterization of a silicon pyramidal neuron. In: Smith LS, Hamilton A (eds) Neuromorphic systems: engineering silicon from neurobiology. World Scientific, Singapore, pp 169–177CrossRefGoogle Scholar
- 97.Roy G (1972) A simple electronic analog of the squid axon membrane: the neuro FET. IEEE Trans Biomed Eng BME-18:60–63CrossRefGoogle Scholar
- 98.Roy, D (2006) Design and developmental metrics of a ‘skin-like’ mutli-input quasi-compliant robotic gripper sensor using tactile matrix. J Intell Robot Syst 46(4):305–337CrossRefGoogle Scholar
- 99.Ruedi PF, Heim P, Kaess F, Grenet E, Heitger F, Burgi PY, Gyger S, Nussbaum P (2003) A 128 × 128 pixel 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction. IEEE J Solid-State Circuits 38:2325–2333CrossRefGoogle Scholar
- 100.Runge RG, Uemura M, Viglione SS (1968) Electronic synthesis of the avian retina. IEEE Trans Biomed Eng BME-15:138–151PubMedCrossRefGoogle Scholar
- 101.Russell A, Orchard G, Dong Y, Mihalas S, Niebur E, Tapson J, Etienne-Cummings R (2010) optimization methods for spiking neurons and networks. IEEE Trans Neural Netw 21(12):1950–1962PubMedCrossRefGoogle Scholar
- 102.Samardak A, Nogaret A, Taylor S, Austin J, Farrer I, Ritchie DA (2008) An analogue sum and threshold neuron based on the quantum tunneling amplification of neural pulses. New J Phys 10Google Scholar
- 103.Schemmel J, Fieres J, Meier K (2008) Wafer-scale integration of analog neural networks. Proceedings of the IEEE joint conference on neural networks, pp 431–438Google Scholar
- 104.Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Riss HK, Delbruck T, Liu S-C, Zahnd S, Whatley AM, Douglas R, Hafliger P, Jimenz-Moreno G, Civit A, Serrano-Gotarredona T, Acosta-Jimenez A, Linares-Barranco B (2006) AER building blocks for multi-layer multi-chip neuromorphic vision systems. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15. MIT Press, Cambridge, pp 1217–1224Google Scholar
- 105.Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas M, Delbruck T, Liu S-C, Douglas R, Hafliger P, Jimenez-Moreno G, Civit A, Serrano-Gotarredona T, Acosta-Jimenez A, Lineares-Barranco B (2009) CAVIAR: a 45 k-neuron, 5 M-synapse, 12G-connects/s AER hardware sensory-processing-learning-actuating system for high speed visual object recognition and tracking. IEEE Trans Neural Netw 20(9):1417–1438PubMedCrossRefGoogle Scholar
- 106.Shurmer HV, Gardner JW (1992).Odor discrimination with an electric nose. Sens Actuators B-Chemical, 8(11):1–11Google Scholar
- 107.Smith LS (2008) Neuromorphic systems: past, present, and future. In: Hussain A et al., (eds) Brain inspired cognitive systems, advances in experimental medicine and biology, 657. MIT Press, Cambridge, pp 167–182Google Scholar
- 108.Snider GS (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36):36502CrossRefGoogle Scholar
- 109.Snider GS (2008) Spike-timing-dependent learning in memristive nanodevices. IEEE/ACM International symposium on nanoscale architectures, pp 85–92Google Scholar
- 110.Snider GS (2011) Instar and outstar learning with memristive nanodevices. Nanotechnology 22:015201PubMedCrossRefGoogle Scholar
- 111.Snider G, Amerson R, Carter D, Abdalla H, Qureshi S, Léveillé J, Versace M, Ames H, Patrick S, Chandler B, Gorchetchnikov A, Mingolla E (2011) Adaptive computation with memristive memory. IEEE Comput 44(2):21–28CrossRefGoogle Scholar
- 112.Strukov DB, Snider GS, Stewart DR, Williams SR (2008) The missing memristor found. Nature 453:80–83PubMedCrossRefGoogle Scholar
- 113.Vainbrand D, Ginosar R (2010) Network-on-chip architectures for neural networks. IEEE international symposium on networks-on-chip, pp 135–144Google Scholar
- 114.Van Schaik A (2001) Building blocks for electronic spiking neural networks. Neural Netw 14(6–7):617–628PubMedCrossRefGoogle Scholar
- 115.Van Schaik A, Vittoz E (1997) A silicon model of amplitude modulation detection in the auditory brainstem. Adv NIPS 9:741–747Google Scholar
- 116.Vasarhelyi G, Adam M, Vazsonyi E, Kis A, Barsony I, Ducso C (2006) Characterization of an integrable single-crystalline 3-D tactile sensor. IEEE Sens J 6(4):928–934CrossRefGoogle Scholar
- 117.Versace M Chandler B (2010) MoNETA: a mind made from memristors. IEEE Spectr 12:30–37CrossRefGoogle Scholar
- 118.Vogelstein R, Malik U, Culurciello E, Cauwenberghs G, Etienne-Cummings R (2007a) A multichip neuromorphic system for spike-based visual information processing. Neural Comput 19(9):2281–2300CrossRefGoogle Scholar
- 119.Vogelstein R, Malik U, Vogelstein J, Cauwenberghs G (2007b) Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Trans Neural Netw 18(1):253–265CrossRefGoogle Scholar
- 120.Watts L, Kerns D, Lyon R, Mead C (1992) Improved implementation of the silicon cochlea. IEEE J Solid-State Circ 27(5):692–700CrossRefGoogle Scholar
- 121.Wijekoon, JHB, Dudek, P (2008) Compact silicon neuron circuit with spiking and bursting behavior. Neural Netw 21:524–534PubMedCrossRefGoogle Scholar
- 122.Wolpert S, Micheli-Tzanakou E (1996) A neuromime in VLSI. IEEE Trans Neural Netw 7(2):300–306PubMedCrossRefGoogle Scholar
- 123.Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB, Snider GS, Medeiros-Ribeiro G, Williams RS (2009) Memristor/CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett 9(10):3640–3645PubMedCrossRefGoogle Scholar
- 124.Yang Z, Murray AF, Woergoetter F, Cameron KL, Boonobhak V (2006) A neuromorphic depth-from-motion vision model with STDP adaptation. IEEE Trans Neural Netw 17(2):482–495PubMedCrossRefGoogle Scholar
- 125.Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol 3:429–433CrossRefGoogle Scholar
- 126.Zaghloul KA, Boahen K (2006) A silicon retina that reproduces signals in the optic nerve. J Neural Eng 3:257–267PubMedCrossRefGoogle Scholar