Polymer and Nanoparticle-Composite Bistable Devices: Physics of Operation and Initial Applications

  • Robert A. Nawrocki
  • Richard M. Voyles
  • Sean E. Shaheen
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 4)

Abstract

Polymer and nanoparticle-composite bistable devices, which fall under the category of Organic Bistable Devices (OBDs), provide non-volatile, two-state ON/OFF behavior for potential memristor or other applications. These materials consist of insulating, semiconducting, or conducting polymers such as poly(methylmethacrylate) (PMMA), poly(vinylcarbazole) (PVK), or poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), respectively. Composites can be made by blending these with inorganic nanoparticles made from materials such as silver, gold, or zinc oxide. Such devices offer several potential advantages compared with their inorganic counterparts. These include reduced cost from solution-based methods of deposition, ease of direct-write printing over large areas, high throughput processing, and light-weight and flexible mechanical properties. Here we review the materials, designs, physics, and operation of these devices. We conclude the chapter with a discussion of possible applications, including recent advances in neuromorphic engineering specifically geared toward use in robotics.

References

  1. 1.
    Sun SS, Dalton LR (2008) Introduction to organic electronic and optoelectronic materials and devices. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    So F (2010) Organic electronics: materials, processing, devices and applications. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Chiang CK, Fincher CR, Jr., Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098–1101CrossRefGoogle Scholar
  4. 4.
    Walles WE (1972) All-plastic electric capacitor. United States Patent 3689810Google Scholar
  5. 5.
    Ebisawa F, Kurokawa T, Nara S (1983) Electrical properties of polyacetylene/polysiloxane interface. J Appl Phys 54(6):3255–3259CrossRefGoogle Scholar
  6. 6.
    Garnier F, Horowitz G, Peng X, Fichou D (1990) An all-organic “soft” thin film transistor with very high carrier mobility. Adv Mater 2(12):592–594CrossRefGoogle Scholar
  7. 7.
    Yoo B, Madgavkar A, Jones BA, Nadkarni S, Facchetti A, Dimmler K, Wasielewski MR, Marks TJ, Dodabalapur A (2006) Organic complementary D flip-flops enabled by perylene diimides and pentacene. Electron Dev Lett, IEEE 27(9):737–739CrossRefGoogle Scholar
  8. 8.
    McGimpsey WG, Samaniego WN, Chen L, Wang F (1998) Singlet−singlet, triplet−triplet, and “optically-controlled” energy transfer in polychromophores. Preliminary models for a molecular scale shift register. J Phys Chem A 102(45):8679–8689CrossRefGoogle Scholar
  9. 9.
    Herlogsson L, Coelle M, Tierney S, Crispin X, Berggren M (2010) Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv Mater 22(1):72Google Scholar
  10. 10.
    Myny K, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, Genoe J, Dehaene W, Heremans P (2009) A 128b organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s. In: Solid-state circuits conference—digest of technical papers, 2009. ISSCC 2009. IEEE International, 8–12 February 2009, pp 206–207Google Scholar
  11. 11.
    David M, Ranasinghe DC, Larsen T (2011) A2U2: a stream cipher for printed electronics RFID tags. In: RFID (RFID), 2011 IEEE International Conference on, 12–14 April 2011, pp 176–183Google Scholar
  12. 12.
    Calamia J (2011) The plastic processor. IEEE Spectrum:2Google Scholar
  13. 13.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541CrossRefGoogle Scholar
  14. 14.
    Shaheen SE, Ginley DS, Jabbour GE (2005) Organic-based photovoltaics: toward low-cost power generation. MRS Bull 30(1):10–19CrossRefGoogle Scholar
  15. 15.
    Brabec C, Scherf U, Dyakonov V (2008) Organic photovoltaics: materials, device physics, and manufacturing technologies. Wiley, New YorkGoogle Scholar
  16. 16.
    Heremans P, Gelinck GH, Muller R, Baeg K-J, Kim D-Y, Noh Y-Y (2011) Polymer and organic nonvolatile memory devices. Chem Mater 23(3):341–358CrossRefGoogle Scholar
  17. 17.
    Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19(30):5442–5451CrossRefGoogle Scholar
  18. 18.
    Liu Y, Cui TH, Varahramyan K (2003) All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron 47(9):1543–1548CrossRefGoogle Scholar
  19. 19.
    Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T (2008) Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci U S A 105(13):4976–4980PubMedCrossRefGoogle Scholar
  20. 20.
    Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE (2001) Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett 79(18):2996–2998CrossRefGoogle Scholar
  21. 21.
    Green R, Morfa A, Ferguson AJ, Kopidakis N, Rumbles G, Shaheen SE (2008) Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl Phys Lett 92(3):033301Google Scholar
  22. 22.
    Lopez MA, Sanchez JC, Estrada M (2008) Characterization of PEDOT:PSS dilutions for inkjet printing applied to OLED fabrication. In: Devices, circuits and systems, 2008. ICCDCS 2008. 7th International Caribbean conference on, 28–30 April 2008, pp 1–4Google Scholar
  23. 23.
    Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS (2000) Fabrication large area photovoltaic devices containing. Opto-Electron Rev 8(4):4Google Scholar
  24. 24.
    Bailey BA, Reese MO, Olson DC, Shaheen SE, Kopidakis N (2011) Air-processed organic photovoltaic devices fabricated with hot press lamination. Org Electron 12(1):108–112CrossRefGoogle Scholar
  25. 25.
    Hu X, Krull P, de Graff B, Dowling K, Rogers JA, Arora WJ (2011) Stretchable inorganic-semiconductor electronic systems. Adv Mater 23(26):2933–2936PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang J, Li CM, Chan-Park MB, Zhou Q, Gan Y, Qin F, Ong B, Chen T (2007) Fabrication of thin-film organic transistor on flexible substrate via ultraviolet transfer embossing. Appl Phys Lett 90(24):243502Google Scholar
  27. 27.
    Kim BC, Too CO, Kwon JS, Bo JM, Wallace GG (2011) A flexible capacitor based on conducting polymer electrodes. Synth Metals 161(11–12):1130–1132CrossRefGoogle Scholar
  28. 28.
    Kushto GP, Kim WH, Kafafi ZH (2005) Flexible organic photovoltaics using conducting polymer electrodes. Appl Phys Lett 86(9):093502Google Scholar
  29. 29.
    Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886PubMedCrossRefGoogle Scholar
  30. 30.
    Son DI, Kim TW, Shim JH, Jung JH, Lee DU, Lee JM, Il Park W, Choi WK (2010) Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett 10(7):2441–2447PubMedCrossRefGoogle Scholar
  31. 31.
    Ro HW, Popova V, Chen L, Forster AM, Ding Y, Alvine KJ, Krug DJ, Laine RM, Soles CL (2011) Cubic silsesquioxanes as a green, high-performance mold material for nanoimprint lithography. Adv Mater 23(3):414–420PubMedCrossRefGoogle Scholar
  32. 32.
    Almeida VR, Lipson M (2004) Optical bistability on a silicon chip. Opt Lett 29(20):2387–2389PubMedCrossRefGoogle Scholar
  33. 33.
    Salinga M, Wuttig M (2011) Phase-change memories on a diet. Science 332(6029):543–544PubMedCrossRefGoogle Scholar
  34. 34.
    Potember RS, Poehler TO, Cowan DO (1979) Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl Phys Lett 34(6):405–407CrossRefGoogle Scholar
  35. 35.
    Ma LP, Liu J, Yang Y (2002) Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett 80(16):2997–2999CrossRefGoogle Scholar
  36. 36.
    Son DI, Shim JH, Park DH, Jung JH, Lee JM, Park WI, Kim TW, Choi WK (2011) Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnology 22(29):295203Google Scholar
  37. 37.
    Mamo MA, Machado WS, van Otterlo WAL, Coville NJ, Huemmelgen IA (2010) Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite. Org Electron 11(11):1858–1863CrossRefGoogle Scholar
  38. 38.
    Wang J, Cheng X, Caironi M, Gao F, Yang X, Greenham NC (2011) Entirely solution-processed write-once-read-many-times memory devices and their operation mechanism. Org Electron 12(7):1271–1274CrossRefGoogle Scholar
  39. 39.
    Son DI, You CH, Kim WT, Jung JH, Kim TW (2009) Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl Phys Lett 94(13):132103-1–132103-3CrossRefGoogle Scholar
  40. 40.
    Chua L (1971) Memristor: the missing circuit element. IEEE Trans Circ Theor 18(5):507–519CrossRefGoogle Scholar
  41. 41.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83PubMedCrossRefGoogle Scholar
  42. 42.
    Berzina T, Erokhina S, Camorani P, Konovalov O, Erokhin V, Fontana MP (2009) Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Appl Mater Interfaces 1(10):2115–2118PubMedCrossRefGoogle Scholar
  43. 43.
    Islam MS, Johns C, Long D, Ohlberg DAA, Shih-Yuan W, Williams RS (2010) Memristors based on an organic monolayer of molecules and a thin film of solid electrolytes. In: Electrical and computer engineering (ICECE), 2010 international conference on, 18–20 December 2010, pp 761–764Google Scholar
  44. 44.
    Velu G, Legrand C, Tharaud O, Chapoton A, Remiens D, Horowitz G (2001) Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator. Appl Phys Lett 79(5):659–661CrossRefGoogle Scholar
  45. 45.
    Kim C-J, Choi S-J, Kim S, Han J-W, Kim H, Yoo S, Choi Y-K (2011) Photoinduced memory with hybrid integration of an organic fullerene derivative and an inorganic nanogap-embedded field-effect transistor for low-voltage operation. Adv Mater 23(29):3326–3331PubMedCrossRefGoogle Scholar
  46. 46.
    Das S, Appenzeller J (2011) FETRAM. An organic ferroelectric material based novel random access memory cell. Nano Lett 11(9):4003–4007PubMedCrossRefGoogle Scholar
  47. 47.
    Ma H, Yip H-L, Huang F, Jen AKY (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388CrossRefGoogle Scholar
  48. 48.
    Lee J, Hong WG, Lee H (2011) Non-volatile organic memory effect with thickness control of the insulating LiF charge trap layer. Org Electron 12(6):988–992CrossRefGoogle Scholar
  49. 49.
    Lin CW, Wang DY, Tai Y, Jiang YT, Chen MC, Chen CC, Yang YJ, Chen YF (2011) Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS(2) nanocrystals embedded in poly(3-hexylthiophene). J Phys D: Appl Phys 44(29):292002Google Scholar
  50. 50.
    Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc 128(46):14863–14870PubMedCrossRefGoogle Scholar
  51. 51.
    Kourgiantakis M, Matzapetakis M, Raptopoulou CP, Terzis A, Salifoglou A (2000) Lead-citrate chemistry. Synthesis, spectroscopic and structural studies of a novel lead(II)-citrate aqueous complex. Inorg Chim Acta 297(1–2):134–138CrossRefGoogle Scholar
  52. 52.
    Nagarajan RH, T.A. (2008) Nanoparticles: synthesis, stabilization, passivation, and functionalization, vol 996. American Chemical SocietyGoogle Scholar
  53. 53.
    Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Solar Energy Mater Solar Cells 93(4):465–475CrossRefGoogle Scholar
  54. 54.
    Houili H, Tutis E, Izquierdo R (2010) Modeling nanoparticle embedded organic memory devices. Org Electron 11(4):514–520CrossRefGoogle Scholar
  55. 55.
    Ma LP, Xu QF, Yang Y (2004) Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl Phys Lett 84(24):4908–4910CrossRefGoogle Scholar
  56. 56.
    Dearnaley G, Morgan DV, Stoneham AM (1970) A model for filament growth and switching in amorphous oxide films. J Non-Cryst Solids 4(0):593–612CrossRefGoogle Scholar
  57. 57.
    Heonjun H, Ohyun K (2010) Electrode-material-dependent switching characteristics of organic nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film. Electron Dev Lett IEEE 31(4):368–370CrossRefGoogle Scholar
  58. 58.
    Blom PWM, Smit C, Haverkort JEM, Wolter JH (1993) Carrier capture into a semiconductor quantum well. Phys Rev B 47(4):2072–2081CrossRefGoogle Scholar
  59. 59.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev B 72(15):155206Google Scholar
  60. 60.
    Gregg BA, Chen SG, Branz HM (2004) On the superlinear increase in conductivity with dopant concentration in excitonic semiconductors. Appl Phys Lett 84(10):1707–1709CrossRefGoogle Scholar
  61. 61.
    Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New YorkGoogle Scholar
  62. 62.
    Lin H-T, Pei Z, Chan Y-J (2007) Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Dev Lett 28(7):569–571CrossRefGoogle Scholar
  63. 63.
    Jung JH, Kim TW (2011) The effect of the trap density and depth on the current bistability in organic bistable devices. J Appl Phys 110(4):043721Google Scholar
  64. 64.
    Naber RCG, Asadi K, Blom PWM, de Leeuw DM, de Boer B (2010) Organic nonvolatile memory devices based on ferroelectricity. Adv Mater 22(9):933–945PubMedCrossRefGoogle Scholar
  65. 65.
    Kim J-M, Lee D-H, Jeun J-H, Yoon T-S, Lee HH, Lee J-W, Kim Y-S (2011) Non-volatile organic memory based on CdSe nano-particle/PMMA blend as a tunneling layer. Synth Metals 161(13–14):1155–1158CrossRefGoogle Scholar
  66. 66.
    Kuang Y, Huang R, Tang Y, Ding W, Zhang L, Wang Y (2010) Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Dev Lett 31(7):758–760CrossRefGoogle Scholar
  67. 67.
    Kim T-W, Oh S-H, Choi H, Wang G, Hwang H, Kim D-Y, Lee T (2008) Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices. Appl Phys Lett 92(25):3Google Scholar
  68. 68.
    Lauters M, McCarthy B, Sarid D, Jabbour GE (2006) Multilevel conductance switching in polymer films. Appl Phys Lett 89(1):013507Google Scholar
  69. 69.
    Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ (2008) Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron 9(5):727–734CrossRefGoogle Scholar
  70. 70.
    Lim JA, Cho JH, Park YD, Kim DH, Hwang M, Cho K (2006) Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors. Appl Phys Lett 88(8):082102Google Scholar
  71. 71.
    Ha H, Kim O (2008) Bipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) thin film. Appl Phys Lett 93(3):033309Google Scholar
  72. 72.
    Liu X, Ji Z, Tu D, Shang L, Liu J, Liu M, Xie C (2009) Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org Electron 10(6):1191–1194CrossRefGoogle Scholar
  73. 73.
    Verbakel F, Meskers SCJ, Janssen RAJ, Gomes HL, Coelle M, Buechel M, de Leeuw DM (2007) Reproducible resistive switching in nonvolatile organic memories. Appl Phys Lett 91(19):192103Google Scholar
  74. 74.
    Bory BF, Meskers SCJ, Janssen RAJ, Gomes HL, de Leeuw3 DM (2010) Trapping of electrons in metal oxide-polymer memory diodes in the initial stage of electroforming. Appl Phys Lett 97(22):3Google Scholar
  75. 75.
    Asadi K, Li MY, Stingelin N, Blom PWM, de Leeuw DM (2010) Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Appl Phys Lett 97(19):193308Google Scholar
  76. 76.
    Whitehead AN, Russell B (1912) Principia mathematica, vol 2. University Press, CambridgeGoogle Scholar
  77. 77.
    Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290):873–876PubMedCrossRefGoogle Scholar
  78. 78.
    Lehtonen E, Poikonen JH, Laiho M (2010) Two memristors suffice to compute all Boolean functions. Electron Lett 46(3):230–230CrossRefGoogle Scholar
  79. 79.
    Mead C (1990) Neuromorphic electronic system. Proc IEEE 78(10):1629–1636CrossRefGoogle Scholar
  80. 80.
    Conradt J, Cook M, Berner R, Lichtsteiner P, Douglas RJ, Delbruck T (2009) A pencil balancing robot using a pair of AER dynamic vision sensors. In: Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, pp 781–784Google Scholar
  81. 81.
    i Badia SB, Pyk P, Verschure PFMJ (2005) A biologically inspired flight control system for a blimp-based UAV. In: International Conference on Robotics and Automation (ICRA05), Barcelona, Spain, 2005Google Scholar
  82. 82.
    Likharev K, Mayr A, Muckra I, Turel O (2003) CrossNets—high-performance neuromorphic architectures for CMOL circuits. In: Reimers JRPCAEJCSR (ed) Molecular electronics Iii, vol 1006. Annals of the New York Academy of Sciences, pp 146–163Google Scholar
  83. 83.
    Snider GS (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36):365202Google Scholar
  84. 84.
    Gorchetchnikov A, Leveille J, Versace M, Ames H, Livitz G, Chandler B, Mingolla E, Carter D, Amerson R, Abdalla H, Qureshi S, Snider G (2011) MoNETA: massive parallel application of biological models navigating through virtual Morris water maze and beyond. BMC Neurosci 12(Suppl 1):P310Google Scholar
  85. 85.
    Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu S-C, Dudek P, Hafliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73Google Scholar
  86. 86.
    Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Networks 17(1):211–221CrossRefGoogle Scholar
  87. 87.
    Nawrocki RA, Shaheen SE, Voyles RM (2011) A neuromorphic architecture from single transistor neurons with organic bistable devices for weights. In: Neural Networks (IJCNN), The 2011 International Joint Conference on, July 31–August 5 2011, pp 450–456Google Scholar
  88. 88.
    Nawrocki RA, Xiaoting Y, Shaheen SE, Voyles RM (2011) Structured computational polymers for a soft robot: actuation and cognition. In: Robotics and automation (ICRA), 2011 IEEE international conference on, 9–13 May 2011, pp 5115–5122Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Robert A. Nawrocki
    • 1
  • Richard M. Voyles
    • 1
  • Sean E. Shaheen
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of DenverDenverUSA
  2. 2.Department of Physics and AstronomyUniversity of DenverDenverUSA

Personalised recommendations