Memristor SPICE Modeling

  • Chris Yakopcic
  • Tarek M. Taha
  • Guru Subramanyam
  • Robinson E. Pino
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 4)


Modeling of memristor devices is essential for memristor based circuit and system design. This chapter presents a review of existing memristor modeling techniques and provides simulations that compare several existing models to published memristor characterization data. A discussion of existing models is presented that explains how the equations of each relate to physical device behaviors.

The simulations were completed in LTspice and compare the output of the different models to current–voltage relationships of physical devices. Sinusoidal and triangular pulse inputs were used throughout the simulations to test the capabilities of each model. The chapter is concluded by recommending a more generalized memristor model that can be accurately matched to several different published device characterizations. This generalized model provides the potential for more accurate circuit simulation for a wide range of device structures and voltage inputs.


Versus Characteristic Window Function Characterization Data Versus Relationship Memristor Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chua LO, Leon O (1971) Memristor—The missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRefGoogle Scholar
  2. 2.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83PubMedCrossRefGoogle Scholar
  3. 3.
    Williams R (2008) How we found the missing memristor. IEEE Spectrum 45(12):28–35CrossRefGoogle Scholar
  4. 4.
    Raja T, Mourad S (2009) Digital logic implementation in memristor-based crossbars. International conference on communications, circuits, and systems, pp 939–943Google Scholar
  5. 5.
    Lehtonen E, Laiho M (2009) Stateful implication logic with memristors. IEEE/ACM international symposium on nanoscale architectures, pp 33–36Google Scholar
  6. 6.
    Wald S, Baker J, Mitkova M, Rafla N (2011) A non-volatile memory array based on nano-ionic conductive bridge memristors. IEEE workshop on microelectronics and electron devices, pp 1–4Google Scholar
  7. 7.
    Snider GS (2008) Cortical computing with memristive nanodevices. SciDAC Rev 10:58–65Google Scholar
  8. 8.
    Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301PubMedCrossRefGoogle Scholar
  9. 9.
    Oblea AS, Timilsina A, Moore D, Campbell KA (2010) Silver chalcogenide based memristor devices. IJCNN, pp 1–3Google Scholar
  10. 10.
    Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429–433PubMedCrossRefGoogle Scholar
  11. 11.
    Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S (2010) Memristive behavior in thin anodic titania. IEEE Electron Dev Lett 31(7):737–739CrossRefGoogle Scholar
  12. 12.
    Miller K (2010) Fabrication and modeling of thin-film anodic titania memristors. Master’s Thesis, Iowa State University, Electrical and Computer Engineering (VLSI), AmesGoogle Scholar
  13. 13.
    Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. IEEE Electron Dev Lett 32(10):1436–1438 (Accepted for publication)CrossRefGoogle Scholar
  14. 14.
    Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(661)Google Scholar
  15. 15.
    Laiho M, Lehtonen E, Russel A, Dudek P (2010) Memristive synapses are becoming reality, institute of neuromorphic engineering, the neuromorphic engineer, a publication of, 10.2417/1201011.003396.
  16. 16.
    Pino RE, Bohl JW, McDonald N, Wysocki B, Rozwood P, Campbell KA, Oblea A, Timilsina A (2010) Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices. IEEE/ACM international symposium on nanoscale architectures, pp 1–4Google Scholar
  17. 17.
    Biolek Z, Biolek D, Biolková V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2):210–214Google Scholar
  18. 18.
    Lehtonen E, Laiho M (2010, February) CNN using memristors for neighborhood connections, pp 1–4Google Scholar
  19. 19.
    Batas D, Fiedler H (2011) A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans Nanotechnol 10(2):250–225CrossRefGoogle Scholar
  20. 20.
    Rak A, Cserey G (2010, April) Macromodeling of the memristor in spice. Comput Aided Des Integr Circ Syst IEEE Trans 29(4):632–636CrossRefGoogle Scholar
  21. 21.
    Benderli S, Wey T (2009) On SPICE macromodelling of TiO2 memristors. Electron Lett 45(7):377–379CrossRefGoogle Scholar
  22. 22.
    Mahvash M, Parker AC (2010, August) A memristor SPICE model for designing memristor circuits. (MWSCAS), pp 989–992Google Scholar
  23. 23.
    Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, Lu W (2011) Synaptic behaviors and modeling of a metal oxide memristor device. Appl Phys A 102:857–863CrossRefGoogle Scholar
  24. 24.
    Abdalla H, Pickett MD (2011) SPICE Modeling of Memristors. ISCAS, pp 1832–1835Google Scholar
  25. 25.
    Shin S, Kim K, Kang S-M (2010, April) Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans Comput Aided Des Integr Circ Syst 29(4):590–598CrossRefGoogle Scholar
  26. 26.
    Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34(6):1793–1803CrossRefGoogle Scholar
  27. 27.
    Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106(7):074508CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Chris Yakopcic
    • 1
  • Tarek M. Taha
    • 1
  • Guru Subramanyam
    • 1
  • Robinson E. Pino
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of DaytonDaytonUSA
  2. 2.Information DirectorateAdvanced Computing Architectures Air Force Research LaboratoryRomeUSA

Personalised recommendations