Phase Change Memory and Chalcogenide Materials for Neuromorphic Applications: Emphasis on Synaptic Plasticity

Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 4)

Abstract

In this chapter we review some basic concepts related to Phase Change Memory (PCM) technology and physics. We discuss recent research encompassing the study of PCM devices and chalcogenide materials for neuromorphic applications. We demonstrate the use of PCM devices for emulating specific functions of a biological synapse, such as synaptic potentiation, synaptic depression and spike-time dependent plasticity (STDP). Throughout the discussion, we emphasize on factors such as materials and programming schemes, important for realizing PCM based large-scale neuromorphic systems.

Keywords

Phase Change Material Synaptic Depression Phase Change Memory Synaptic Potentiation Chalcogenide Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to specially thank Christian Gamrat, Olivier Bichler, and Damien Quileroz for collaborating on the work described in Sec.  10.4. Dominique Vuillaume, Luca Perniola, Veronique Sousa, and Ludovic Poupinet for fruitful discussions.

References

  1. 1.
    Snider GS (2008) Proceedings of IEEE international symposium on nanoscale architectures (NANOARCH), pp 85–92Google Scholar
  2. 2.
    Purves D (2004) Neuroscience, 3rd ed. Sinauer Associates Inc, Massachusetts, pp 7–9Google Scholar
  3. 3.
    Mitra S, Fusi S, Indiveri G (2006) Proceedings of IEEE international symposium on Circuits and Systems (ISCAS)Google Scholar
  4. 4.
    Likharev K (2005) Proceedings of european conference on circuit theory design, vol 2, pp II/273Google Scholar
  5. 5.
    Alibart F, Pleutin S, Guérin S, Novembre C, Lenfant S, Lmimouni K, Gamrat C, Vuillaume V (2010) An organic nanoparticle transistor behaving as a biological spiking synapse. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv Funct Mat 20:330–337Google Scholar
  6. 6.
    Folling S, Turel O, Likharev K (2001) Proceedings of international joint conference on neural networks (IJCNN), pp 216–221Google Scholar
  7. 7.
    Friesz AK, Parker AC, Zhou C, Ryu K, Sanders JM, Wong HSP, Deng J (2007) Annual fall meeting biomedical engineering society (BMES)Google Scholar
  8. 8.
    Jo SH, Chang T, Ebong I, Bhavidya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301Google Scholar
  9. 9.
    Yu S, Wong HSP (2010) IEEE international electron devices meeting (IEDM), pp 22.1.1–22.1.4Google Scholar
  10. 10.
    Zhang XL (2008) A mathematical model of a neuron with synapses based on physiology. hdl:10101/npre.2008.1703.1, Nature precedings. http://precedings.nature.com/documents/1703/version/1
  11. 11.
    Sargsyan AR, Melkonyan AA, Papatheodoropoulos C, Mkrtchian HH, Kostopoulos V (2003) A model synapse that incorporates the properties of short-term and long- term synaptic plasticity. Neural Netw 16(8):1161–1177Google Scholar
  12. 12.
    Song S (2004) Hebbian learning and spike-timing-dependent plasticity. Computational neuroscience. In: Feng J (ed). Chapman & Hall/CRC (Chap. 11)Google Scholar
  13. 13.
    Chua L (1971) Memristor the missing circuit element. IEEE Trans circ theory 18(5):507–519Google Scholar
  14. 14.
    DeSalvo B (2009) Silicon non-volatile memories. Wiley-ISTE, pp 188–216Google Scholar
  15. 15.
    Waterman AT (1917) Positive ionization of certain hot salts, together with some observations on the electrical properties of molybdenite at high temperatures. Phil Mag 33:225Google Scholar
  16. 16.
    Pearson AD, Northover WR, Dewald JF, Peck WF, Jr (1962) Chemical, physical, and electrical properties of some unusual inorganic glasses. Advances in glass technology. Plenum Press, New York, pp 357–365Google Scholar
  17. 17.
    Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 22;1450–1453Google Scholar
  18. 18.
    Feinleib J, Neufville JD, Moss SC, Ovshinsky SR,(1971) Rapid reversible light induced crystallization of amorphous semiconductors. Appl Phys Lett 18:254–257Google Scholar
  19. 19.
    Neale RG, Nelson DL, Moore GE (1970) Nonvolatile and reprogrammable, the read mostly memory is here. Electronics 43:56–60Google Scholar
  20. 20.
    Shanks RR, Davis C (1978) ISSCC digest of technical papers, pp 112–113Google Scholar
  21. 21.
    Bedeschi F, Fackenthal R, Resta C, Donze EM, Jagasivamani M, Buda EC, Pellizzer F, Chow DW, Cabrini A, Calvi G, Faravelli R, Fantini A, Torelli G, Mills D, Gastaldi R, Casagrande G (2009) A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J Solid State Circ 44(1):217–227Google Scholar
  22. 22.
    Close GF, Frey U, Morrish J, Jordan R, Lewis S, Maffitt T, Breitwisch M, Hagleitner C, Lam C Eleftheriou E (2011) Symposium on VLSI circuits, pp 202–203Google Scholar
  23. 23.
    Lee KJ, Cho BH, Cho WY, Kang S, Choi BG, Oh HR, Lee CS, Kim HJ, Park JM, Wang Q, Park MH, Ro YH, Choi JY, Kim KS, Kim YR, Shin IC, Lim KW, Cho HK, Choi CH, Chung WR, Kim DE, Yoon YJ, Yu KS, Jeong GT, Jeong HS, Kwak CK, Kim CH, Kim K (2008) A 90 nm 1.8 V 512 Mb diode-switch PRAM with 266MB/s read throughput. IEEE J Solid-State Circ 43(1):150–162Google Scholar
  24. 24.
    van Pieterson L, Lankhorst MHR, van Schijndel M, Kuiper AET, Roosen JHJ (2005) Phase-change recording materials with a growth-dominated crystallization mechanism: a materials overview. J Appl Phys 97:083520Google Scholar
  25. 25.
    Bruns G, Merkelbach P, Schlockermann C, Salinga M, Wuttig M, Happ TD, Philipp JB, Kund M (2009) Nanosecond switching in GeTe phase change memory cells. Appl Phys Lett 95:043108Google Scholar
  26. 26.
    Russo U, Ielmini D, Lacaita AL (2007) IEEE Annual international reliability physics symposium, pp 547–553Google Scholar
  27. 27.
    Boniardi M, Ielmini D, Lacaita AL, Redaelli A, Pirovano A, Tortorelli I, Allegra M, Magistretti M, Bresolin C, Erbetta D, Modelli A, Varesi E, Pellizzer F, Bez R,(2010) IEEE international memory workshop (IMW), pp 1–4Google Scholar
  28. 28.
    Matsuzaki N, Kurotsuchi K, Matsui Y, Tonomura O, Yamamoto N, Fujisaki Y, Kitai N, Takemura R, Osada K, Hanzawa S, Moriya H, Iwasaki T, Kawahara T, Takaura N, Terao M, Matsuoka M, Moniwa M (2005) IEEE international electron devices meeting (IEDM), pp 738–741Google Scholar
  29. 29.
    Horii H, Yi JH, Park JH, Ha YH, Baek IG, Park SO, Hwang YN, Lee SH, Kim YT, Lee KH, Chung UI, Moon JT (2003) Symposium on VLSI Tech, pp 177–178Google Scholar
  30. 30.
    Fantini A, Sousa V, Perniola L, Gourvest E, Bastien JC, Maitrejean S, Braga S, Pashkov N, Bastard A, Hyot B, Roule A, Persico A, Feldis H, Jahan C, Nodin JF, Blachier D, Toffoli A, Reimbold G, Fillot F, Pierre F, Annunziata R, Benshael D, Mazoyer P, Vallee C, Billon T, Hazart J, De Salvo B, Boulanger F (2010) IEEE international electron devices meeting (IEDM), pp 29.1.1–29.1.4Google Scholar
  31. 31.
    Beneventi GB, Perniola L, Fantini A, Blachier D, Toffoli A, Gourvest E, Maitrejean S, Sousa V, Jahan C, Nodin JF, Persico A, Loubriat S, Roule A, Lhostis S, Feldis H, Reimbold G, Billon T, De Salvo B, Larcher L, Pavan P, Bensahel D, Mazoyer P, Annunziata R, Boulanger F (2010) Proceedings of the european solid state device research conference (ESSDERC), pp 313–316Google Scholar
  32. 32.
    Zamarreño-Ramos C, Camuñas-Mesa LA, Perez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci 5:26Google Scholar
  33. 33.
    Peng C, Cheng L, Mansuripur M (1997) Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J Appl Phys 82(9):4183–4191Google Scholar
  34. 34.
    Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832Google Scholar
  35. 35.
    Ielmini D, Zhang Y (2007) Analytical model for subthreshold conduction and threshold switching in chalcogenide based memory devices. J Appl Phys 102:054517Google Scholar
  36. 36.
    Sonoda K, Sakai A, Moniwa M, Ishikawa K, Tsuchiya O, Inoue Y (2008) A compact model of phase change memory based on rate equations of crystallization and amorphization . IEEE Trans Electron Dev 55(7):1672–1681Google Scholar
  37. 37.
    Pirovano A, Lacaita AL, Benvenuti A, Pellizzer F, Bez R (2004) Electronic switching in phase-change memories. IEEE Trans Electron Dev 51(3):452–459Google Scholar
  38. 38.
    Kato T, Tanaka K (2005) Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Japanese J Appl Phys 44(10):7340–7344Google Scholar
  39. 39.
    Mott NF Davis EA (1967) Electronic processes in noncrystalline materials. Clarendon Press, OxfordGoogle Scholar
  40. 40.
    Popescu C (1975) The effect of local non-uniformities on thermal switching and high field behavior of structures with chalcogenide glasses. Solid State Electron 18(7/8):671–681Google Scholar
  41. 41.
    Owen AE, Robertson JM, Main C (1979) The threshold characteristics of chalcogenide-glass memory switches. J Non-Cryst Solids 32:29–52Google Scholar
  42. 42.
    Adler D, Henisch HK, Mott SD (1978) The mechanism of threshold switching in amorphous alloys. Rev Mod Phys 50(2):209–220Google Scholar
  43. 43.
    Adler D, Shur MS, Silver M, Ovshinsky SR (1980) Threshold switching in chalcogenide-glass thin films. J Appl Phys 51(6):3289–3309Google Scholar
  44. 44.
    Ielmini D, Zhang Y (2007) Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J Appl Phys 102:054517Google Scholar
  45. 45.
    Ielmini D, Zhang Y (2007) Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses. Appl Phys Lett 90:192102Google Scholar
  46. 46.
    Karpov IV, Mitra M, Kau D, Spadini G, Kryukov YA, Karpov VG (2007) Fundamental drift of parameters in chalcogenide phase change memory. J Appl Phys 102(12):124503Google Scholar
  47. 47.
    Ielmini D, Lavizzari S, Sharma D, Lacaita AL (2007) IEEE international electron devices meeting (IEDM), pp 939–942Google Scholar
  48. 48.
    Xu W, Zhang T (2010) International symposium on quality electronic design (ISQED), pp 356–361Google Scholar
  49. 49.
    Liu B, Zhang T, Xia J, Song Z, Feng S, Chen B (2004) Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory. Semicond Sci Technol 19(6):L61–L64Google Scholar
  50. 50.
    Lai YF, Feng J, Qiao BW, Cai YF, Lin YY, Tang TA, Cai BC, Chen B (2006) Stacked chalcogenide layers used as multi-state storage medium for phase change memory. Appl Phys A 84(1–2):21–25Google Scholar
  51. 51.
    Nirschl T, Phipp JB, Happ TD, Burr GW, Rajendran B, Lee MH, Schrott A, Yang M, Breitwisch M, Chen CF, Joseph E, Lamorey M, Cheek R, Chen SH, Zaidi S, Raoux S, Chen YC, Zhu Y, Bergmann R, Lung HL, Lam C (2007) IEEE international electron devices meeting (IEDM), pp 461–464Google Scholar
  52. 52.
    Servalli G (2009) IEEE international electron devices meeting (IEDM), pp 113–116Google Scholar
  53. 53.
    Caldwell MA, Raoux S, Wang RY, Wong HSP, Milliron DJ (2010) Synthesis and size-dependent crystallization of colloidal germanium telluride Nanoparticles. J Mater Chem 20(7):1285–1291Google Scholar
  54. 54.
    Wong HP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, Goodson KE (2010) Phase change memory. Proc IEEE 98(12):2201–2227Google Scholar
  55. 55.
    Liang J, Jeyasingh RGD, Chen HY, Wong HSP (2011) Symposium on VLSI technology digest, pp 100–101Google Scholar
  56. 56.
    Xiong F, Liao A, Estrada D, Pop E (2011) Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332(6029):568Google Scholar
  57. 57.
    Pellizzer F, Pirovano A, Ottogalli F, Magistretti M, Scaravaggi M, Zuliani P, Tosi M, Benvenuti A, Besana P, Cadeo S, Marangon T, Morandi R, Piva R, Spandre A, Zonca R, Modelli A, Varesi E, Lowrey T, Lacaita A, Casagrande G, Cappelletti P, Bez R (2004) Symposium on VLSI technology digest, pp 18–19Google Scholar
  58. 58.
    Lai S (2003) IEEE international electron devices meeting (IEDM), pp 10.1.1–10.1.4Google Scholar
  59. 59.
    Pirovano A, Redaelli A, Pellizzer F, Ottogalli F, Ielmini D, Lacaita AL, Bez R (2004) Reliability study of phase-change nonvolatile memories. IEEE Trans Device Mater Reliab 4(3):422–427Google Scholar
  60. 60.
    Ovshinsky SR (2004) Optical cognitive information processing – a new field. Japanese J Appl Phys 43 (7B):4695–4699Google Scholar
  61. 61.
    Wright CD, Liu Y, Kohary KI, Aziz MM, Hicken RJ (2011) Arithmetic and biologically-inspired computing using phase change materials. Adv Mater 23:3408–3413Google Scholar
  62. 62.
    Kuzum D, Jeyasingh RGD, Lee B, Wong HSP (2011) Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. doi:10.1021/nl201040yGoogle Scholar
  63. 63.
    Breitwisch MJ, Cheek RW, Lam CH, Modha DS, Rajendran B (2010) US Patent Application Publication, US2010/0299297, 25 Nov 2010Google Scholar
  64. 64.
    Suri M, Bichler O, Querlioz D, Cueto O, Perniola L, Sousa V, Vuillaume D, Gamrat C, DeSalvo, B (2011) IEEE international electron device meeting (IEDM)Google Scholar
  65. 65.
    Querlioz D, Dollfus P, Bichler O, Gamrat C (2011) Proc IEEE/ACM international symposium on nanoscale architectures (NANOARCH), pp 150–156Google Scholar
  66. 66.
    Lichtsteiner P, Posch V, Delbruck V (2008) A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J solid-state circ 43(2)566–576Google Scholar
  67. 67.
    Suri M, Sousa V, Perniola L, Vuillaume D, DeSalvo B (2011) International joint conference on neural networks (IJCNN), pp 619–624Google Scholar
  68. 68.
    Meinders ER, Mijiritskii AV, van Pieterson L, Wuttig M (2006) Optical data storage-phase-change media and recording. Springer, The NetherlandsGoogle Scholar
  69. 69.
    Raoux S, Wuttig M,(2008) Phase change materials- science and applications. Springer, BerlinGoogle Scholar
  70. 70.
    Lacaita AL, Wouters DJ (2008) Phase-change memories. Phys Stat Sol A 205(10):2281–2297Google Scholar
  71. 71.
    Shelby RM, Raoux S (2009) Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. J Appl Phys 105:104902Google Scholar
  72. 72.
    Kim IS, Cho SL, Im DH, Cho EH, Kim DH, Oh GH, Ahn DH, Park SO, Nam SW, Moon JT, Chung CH (2010) Symposium on VLSI technology, pp 203–204Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.CEA-LETIGrenobleFrance

Personalised recommendations