Prolog: Memristor Minds

  • Greg Snider
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 4)


What is the best, near-term approach for building intelligent machines? We explore the impact of memristive memory on the technological and mathematical foundations of neuromorphic computing.


Nonlinear Differential Equation Intelligent Machine Adaptive Resonance Theory Digital CMOS Digital Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afifi A, Ayatollahi A, Raissi F (2009) STDP implementation using memristive nanodevice in CMOS-Nano neuromorphic networks. IEICE Electron Exp 6(3):148–153CrossRefGoogle Scholar
  2. 2.
    Ananthanarayanan R, Esser S, Simon H, Modha D (2009) The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In: Proceedings of the conference on high performance computing networking, storage and analysis, Portland, Oregon, 14–20 November 2009. SC ’09. ACM, New York, NY, 1–12. Accessed 25 Oct 2011Google Scholar
  3. 3.
    Bernabé L, Serrano-Gotarredona T (2009) Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Precedings. Accessed 31 Mar 2009Google Scholar
  4. 4.
    Blume M (2000) An efficient mapping of fuzzy ART onto a neural architecture. In: Jain LC, Lazzerini B, Halici U (eds) Innovations in ART neural networks. Physica-Verlag, HeidelbergGoogle Scholar
  5. 5.
    Carpenter G, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vision Graph Image Process 37:54–115CrossRefGoogle Scholar
  6. 6.
    Carpenter G, Grossberg S (1988, March) The ART of adaptive pattern recognition by a self-organized neural network. Computer 21(3):77–88CrossRefGoogle Scholar
  7. 7.
    Carpenter GA, Grossberg S, Rosen DB (1991) Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4:759–771CrossRefGoogle Scholar
  8. 8.
    Choi H, Jung H, Lee J, Yoon J, Park J, Seong D, Lee W, Hasan M, Jung GY, Hwang H (2009) An electrically modifiable synapse array of resistive switching memory. Nanotechnology 20(34):345201PubMedCrossRefGoogle Scholar
  9. 9.
    Douglas R, Mahowald M, Mead C (1995) Neuromorphic analogue VLSI. Ann Rev Neurosci 18:255–281PubMedCrossRefGoogle Scholar
  10. 10.
    Faggin F, Mead C (1995) VLSI implementation of neural networks. In: Zornetzer SF, Davis JL, Law C (eds) An introduction to neural and electronic networks. Academic Press, San Diego (Chap 15)Google Scholar
  11. 11.
    Franken E, van Almsick M, Rongen P, Florack L, ter Haar Romeny B (2006) An efficient method for tensor voting using steerable filters. Lect Notes Comput Sci 3954:228–240. doi:10.1007/11744085_18CrossRefGoogle Scholar
  12. 12.
    Grossberg S (1976a) Adaptive pattern classification and universal recoding I: parallel development and coding of neural feature detectors. Biol Cybernet 23:121–134CrossRefGoogle Scholar
  13. 13.
    Grossberg S (1976b) Adaptive pattern classification and universal recoding II: feedback, expectation, olfaction, and illusions. Biol Cybernet 23:187–202CrossRefGoogle Scholar
  14. 14.
    Grossberg S, Mingolla E (1985) Neural dynamics of perceptual grouping—textures, boundaries, and emergent segmentations. Percept Psychophys 38:141–171PubMedCrossRefGoogle Scholar
  15. 15.
    Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301PubMedCrossRefGoogle Scholar
  16. 16.
    Kennedy M (2011) Questions about STDP as a general model of synaptic plasticity. Accessed 25 Oct 2011Google Scholar
  17. 17.
    Kogge P (2011) The tops in flops. IEEE Spectr 48:49–55CrossRefGoogle Scholar
  18. 18.
    Mead C (1989) Analog VLSI and neural systems. Addison-Wesley Longman Publishing Co., Inc, BostonGoogle Scholar
  19. 19.
    Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78:1629–1636CrossRefGoogle Scholar
  20. 20.
    Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106;074508CrossRefGoogle Scholar
  21. 21.
    Shouval HZ et al (2010) Spike-timing-dependent plasticity: a consequence of more fundamental learning laws. Front Comput Neurosci 4:19PubMedGoogle Scholar
  22. 22.
    Snider G (2007, September 12) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36):365202CrossRefGoogle Scholar
  23. 23.
    Snider G (2008) Spike-timing-dependent learning in memristive nanodevices. In: IEEE/ACM international symposium on nanoscale architectures, Anaheim, CA, pp 85–92Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations