Advertisement

Nonstationarity in Extremes and Engineering Design

  • Dörte Jakob
Chapter
Part of the Water Science and Technology Library book series (WSTL, volume 65)

Abstract

Dealing with nonstationarity in hydrological extremes in the design of structures is a truly multidisciplinary undertaking; requiring expertise in hydrology, statistics, engineering and decision-making. This chapter gives a broad overview over relevant key aspects in these areas including definitions of key words like ‘extremes’ and ‘stationarity’. We briefly cover current knowledge of both climate variability and climate change and effects on hydrological extremes with particular emphasis on precipitation and floods. This is followed by a brief discussion on impacts of hydrological extremes, risk assessments and options for adaptation as well as hurdles. A large part of this chapter is dedicated to new statistical techniques (or extensions of existing techniques) to address nonstationarity in hydrological extremes through the use of time-varying parameters, moments, quantile estimates and the use of covariates. A changing climate may prove impetus to change some of the existing paradigms and explore new avenues. The need to reduce uncertainty, or alternatively derive more reliable uncertainty estimates, is exacerbated in a changing climate. One of the key strategies should be a move from deterministic to probabilistic approaches. Bayesian techniques are a promising framework in this context.

Keywords

Tropical Cyclone Flood Risk Indian Ocean Dipole Southern Oscillation Index Southern Annular Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The importance of the subject matter is evident from the number of recent journal publications and workshops on the topic. For readers looking for a small number of informative discussions and reviews focusing on particular aspects, the following is a shortlist of recommended reading. Extensive use has been made of this material in the preparation of this book chapter.

Hydrological extremes in a changing world

Bates et al. (2008)

IPCC (2011)

Kundzewicz and Kaczmarek (2000)

Rainfall frequency analysis

Svensson and Jones (2010)

Frequency analysis under nonstationarity

Khaliq et al. (2006)

Bayesian techniques

Seidou et al. (2006)

Decision making

Water Utility Climate Alliance (2010)

Crosscutting

Workshop on Nonstationarity, Hydrologic Frequency Analysis, and Water Management, 13–15 January 2010, Boulder, Colorado, Colorado Water Institute Information Series No. 109, available online: http://www.cwi.colostate.edu/NonstationarityWorkshop/proceedings.shtml.

I am grateful to all of those who have supported me in writing this chapter. In particular I would like to thank Sri Srikanthan and Karin Xuereb at the Australian Bureau of Meteorology and Amir AghaKouchak at the Department of Civil and Environmental Engineering University of California for their input during the review process.

References

  1. Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K (2007) Assessment of adaptation practices, options, constraints and capacity. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp 717–743Google Scholar
  2. Ailliot P, Thompson C, Thomson P (2011) Mixed methods for fitting the GEV distribution. Water Resour Res 47:W05551. doi: 10.1029/2010WR009417 CrossRefGoogle Scholar
  3. Alila Y (1999) A hierarchical approach for the regionalization of precipitation annual maxima in Canada. J Geophys Res 104(36):31645–31655CrossRefGoogle Scholar
  4. Apel H, Thieken AH, Merz B, Bloeschl G, Apel H, Thieken AH, Merz B, Bloeschl G (2006) A probabilistic modelling system for assessing flood risks. Nat Hazards 38:79–100. doi: 10.1007/s11069-005-8603-7 CrossRefGoogle Scholar
  5. Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(2):1–6. doi: 10.1029/2010GL045384 CrossRefGoogle Scholar
  6. Bárdossy A, Pegram G (2011) Downscaling precipitation using regional climate models and circulation patterns toward hydrology. Water Resour Res 47(4):1–18. doi: 10.1029/2010WR009689 CrossRefGoogle Scholar
  7. Bastola S, Murphy C, Sweeney J (2011) The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv Water Resour 34(5):562–576. doi: 10.1016/j.advwatres.2011.01.008, Elsevier LtdCrossRefGoogle Scholar
  8. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 ppGoogle Scholar
  9. Bayliss AC, Reed DW (2001) The use of historical information in flood frequency estimation, Report to MAFF, CEH WallingfordGoogle Scholar
  10. Benito G, Thorndycraft VR (2005) Palaeoflood hydrology and its role in applied hydrological sciences. J Hydrol 313:3–15CrossRefGoogle Scholar
  11. Benito G, Lang M, Barriendos M, Llasat MC, Francés F, Ouarda T et al (2004) Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat Hazards 31(3):623–643. doi: 10.1023/B:NHAZ.0000024895.48463.eb CrossRefGoogle Scholar
  12. Boé J, Terray L, Martin E, Habets F (2009) Projected changes in components of the hydrological cycle in French river basins during the 21st century. Water Resour Res 45:W08426CrossRefGoogle Scholar
  13. Boughton W, Droop O (2003) Continuous simulation for design flood estimation – a review. Environ Model Software 18(4):309–318. doi: 10.1016/S1364-8152(03)00004-5 CrossRefGoogle Scholar
  14. Brown C (2009) Decision-scaling for robust planning and policy under climate uncertainty. World resources report, Washington, DC. Available online at http://www.worldresourcesreport.org
  15. Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sanod M, Nam LC, Wichienkeeof A, Minh TT, Mai Hong TM (2011) Climate as a contributing factor in the demise of Angkor, Cambodia. Proceedings of the National Academy of Science,  www.pnas.org/cgi/doi/10.1073/pnas.0910827107
  16. Bukovsky M, Karoly DJ (2011) A regional study of climate change impacts on warm-season precipitation in the Central U.S. J Climate. doi: 10.1175/2010JCLI3447.1
  17. Burauskaite-Harju A, Grimvall A, von Brömssen C (2010) A test for network-wide trends in rainfall extremes. Int J Climatol. doi: 10.1002/joc.2263
  18. Bureau of Meteorology (1974) Brisbane floods. Department of Science, CanberraGoogle Scholar
  19. Bureau of Meteorology (2011) Special climate statement 24 (1st issued 7th January 2011, updated 24th February 2011), http://www.bom.gov.au/climate/current/special-statements.shtml. Accessed 30 Apr 2011
  20. Charles SP, Bari MA, Kitsios A, Bates BC (2007) Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment Western Australia. Int J Climatol 1690:1673–1690. doi: 10.1002/joc CrossRefGoogle Scholar
  21. Chen L-C, Bradley AA (2006) Adequacy of using surface humidity to estimate atmospheric moisture availability for probable maximum precipitation. Water Resour Res 42(9):1–17. doi: 10.1029/2005WR004469 CrossRefGoogle Scholar
  22. Chiew FHS (2006) Estimation of rainfall elasticity of streamflow in Australia. Hydrol Sci J 51:613–625CrossRefGoogle Scholar
  23. Christensen JH, Christensen OB (2002) Severe summertime flooding in Europe. Nature 421:805–806CrossRefGoogle Scholar
  24. Clark C, Rakhecha PR, Hill C, Lane S (2002) Areal PMP distribution of one-day to three-day duration over India. Meteorol Appl 9:399–406. doi: 10.1017/S1350482702004024 CrossRefGoogle Scholar
  25. Coles S (2001) An introduction to the statistical modelling of extreme values, Springer Series in Statistics. Springer, LondonGoogle Scholar
  26. Cook JL (1987) Quantifying peak discharges for historical floods. J Hydrol 96:29–40CrossRefGoogle Scholar
  27. Crosbie RS, Dawes WR, Charles SP, Mpelasoka FS, Aryal S, Barron O, Summerell GK (2011) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38(11):1–5. doi: 10.1029/2011GL047657.CrossRefGoogle Scholar
  28. Cunderlik JM, Burn DH (2003) Non-stationary pooled flood frequency analysis. J Hydrol Amst 276:210–223. doi: 10.1016/S0022-1694(03)00062-3 CrossRefGoogle Scholar
  29. Cunderlik JM, Ouarda TBMJ (2006) Regional flood-duration- frequency modeling in the changing environment. J Hydrol Amst 318:276–291. doi: 10.1016/j.jhydrol.2005.06.020 CrossRefGoogle Scholar
  30. Dale M (2005) Impact of climate change on UK flooding and future predictions. Proc ICE Water Manage 158(4):135–140. doi: 10.1680/wama.2005.158.4.135 CrossRefGoogle Scholar
  31. Dalrymple T (1960) Flood frequency analysis, U.S. Geological Survey, Water Supply Paper 1543-A, Reston, VAGoogle Scholar
  32. Department of Environment and Climate Change, New South Wales (Australia) (2007) Floodplain risk management guideline – practical consideration of climate change, 14 ppGoogle Scholar
  33. Dettinger MD, Hidalgo H, Das T, Cayan D, Knowles N (2009) Projections of potential flood regime changes in California: California Energy Commission Report CEC-500-2009-050-D, 68 ppGoogle Scholar
  34. El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators of the non-stationary GEV model parameters. Water Resour Res 43:W03410. doi: 10.1029/2005WR004545 CrossRefGoogle Scholar
  35. Enzel Y, Ely LL, House PK, Baker VR (1993) Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado river basin. Water Resour Res 29:2287–2297CrossRefGoogle Scholar
  36. Faulkner D (1999) Flood estimation handbook, vol 2: Rainfall frequency estimation. Institute of Hydrology, Wallingford, 110 ppGoogle Scholar
  37. Fernandes W, Naghettini M, Loschi R (2010) A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stoch Environ Res Risk Assess 24(8):1127–1143. doi: 10.1007/s00477-010-0365-4 CrossRefGoogle Scholar
  38. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi: 10.1029/2005JD005965 CrossRefGoogle Scholar
  39. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation. J Climate 18:1326–1350CrossRefGoogle Scholar
  40. Haddad K, Rahman A, Weinmann E, Kuczera G, Ball J (2010) Streamflow data preparation for regional flood frequency analysis: lessons from southeast Australia. Aust J Water Resour 14(1):17–32.Google Scholar
  41. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196CrossRefGoogle Scholar
  42. Hanel M, Buishand TA, Ferro CAT (2009) A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J Geophys Res Atmos 114:D15107CrossRefGoogle Scholar
  43. Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C et al (2010) A global ranking of port cities with high exposure to climate extremes. Clim Chang 104:89–111. doi: 10.1007/s10584-010-9977-4 CrossRefGoogle Scholar
  44. Hardaker PJ (1996) Estimation of Probable Maximum Precipitation (PMP) for the Evinos catchment in Greece using a storm model. Meteorol Appl 3:137–145CrossRefGoogle Scholar
  45. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–107. doi: 10.1175/2009BAMS2607.1.CrossRefGoogle Scholar
  46. Hawkins E, Sutton R (2010) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1–2):407–18. doi: 10.1007/s00382-010-0810-6.Google Scholar
  47. Hershfield DM (1977) Some tools for hydrometeorologists. Preprints, 2nd conference hydrometeorology, American Meteorological Society, Boston, MA, pp 79–82Google Scholar
  48. Hosking JR, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29:339–49.CrossRefGoogle Scholar
  49. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Hughes JP, Guttorp P, Charles SP (1999) A non-homogeneous hidden Markov model for precipitation occurrence. Appl Statist 48:15–30CrossRefGoogle Scholar
  51. Institution of Engineers (1987) Australia Australian rainfall and runoff: a guide to flood estimation, vol 1, Editor-in-chief DH Pilgrim, Rev Edn 1987 (Reprinted edn 1998), Barton, ACTGoogle Scholar
  52. IPCC (2007) Climate Change 2007: the physical science basis, contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge/New York, 996 ppGoogle Scholar
  53. IPCC (2011) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Intergovernmental panel on climate change special report on managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  54. Ishak EH, Rahman A, Westra S, Sharama A, Kuzcera G (2011) Trends in peak steamflow data in Australia: impacts of serial and cross-correlation. In: Proceedings of the 34th IAHR world congress, 26 June – 1 July 2011, Brisbane, Australia, pp 1–8Google Scholar
  55. Jakob D (2011) Exploring links between effects of climate variations on average rainfall and rainfall extremes. In: Proceedings of the 34th IAHR world congress, 26 June–1 July 2011, Brisbane, Australia, pp 1–8Google Scholar
  56. Jakob D, Smalley R, Meighen J, Xuereb K, Taylor B (2009) Climate change and probable maximum precipitation. HRS report no. 12. Australian Bureau of Meteorology, MelbourneGoogle Scholar
  57. Jakob D, Karoly DJ, Seed A (2011a) Non-stationarity in daily and sub-daily intense rainfall – part 1: Sydney, Australia. Nat Hazards Earth Syst Sci 11(8):2263–2271. doi: 10.5194/nhess-11-2263-2011 CrossRefGoogle Scholar
  58. Jakob D, Karoly DJ, Seed A (2011b) Non-stationarity in daily and sub-daily intense rainfall – part 2: Regional assessment for sites in south-east Australia. Nat Hazards Earth Syst Sci 11(8):2273–2284. doi: 10.5194/nhess-11-2273-2011 CrossRefGoogle Scholar
  59. Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationarity hydro-meteorological observations: a review. J Hydrol 329:534–552CrossRefGoogle Scholar
  60. Kirshen P, Knee K, Ruth M (2008) Climate change and coastal flooding in Metro Boston: impacts and adaptation strategies. Clim Change 90(4):453–73. doi: 10.1007/s10584-008-9398-9.CrossRefGoogle Scholar
  61. Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Clim 21(11):2651–63. doi: 10.1175/2007JCLI2119.1.CrossRefGoogle Scholar
  62. Kundzewicz Z, Kaczmarek Z (2000) Coping with hydrological extremes. Water Int 25(1):66–75. doi: 10.1080/02508060008686798 CrossRefGoogle Scholar
  63. Kundzewicz Z, Robson A (2004) Change detection in hydrological recordsa review of the methodology/Revue methodologique de la detection de changements dans les chroniques hydrologiques. Hydrol Sci J 49(1):1–19. doi: 10.1623/hysj.49.1.7.53993 Google Scholar
  64. Ladson A (2008) Hydrology: an Australian introduction. Melbourne: Oxford University Press.Google Scholar
  65. Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–1171CrossRefGoogle Scholar
  66. Laurenson EM, Mein RG (1995) RORB: hydrograph synthesis by runoff routing. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 151–164Google Scholar
  67. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature 1:511–514Google Scholar
  68. Leslie LM, Leplastrier M (2008) Estimating future trends in severe hailstorms over the Sydney Basin: a climate modelling study. Atmos Res 87:37–51CrossRefGoogle Scholar
  69. Levish D, Ostenaa D, O’Connell D (1996) Paleohydrologic bounds and the frequency of extreme floods on the Santa Ynez River, California, 1996, California weather symposium a prehistoric look at California rainfall and floods 1996, 19 ppGoogle Scholar
  70. Levish D, Ostenaa D, O’Connell D (1997) Paleoflood hydrology and dam safety. In: Mahoney DJ (ed) Waterpower 97: proceedings of the international conference on hydropower. American Society of Civil Engineers, New York, pp 2205–2214Google Scholar
  71. Mailhot A, Duchesne S, Caya D, Talbot G (2007) Assessment of future change in intensity-duration-frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM). J Hydrol 347:197–210CrossRefGoogle Scholar
  72. Malitz G (2005) Grundlagenbericht über Starkniederschlagshöhen in Deutschland, (Grundlagenbericht KOSTRA-DWD-2000), Deutscher Wetterdienst – HydrometeorologieGoogle Scholar
  73. Marsh TJ, Dale M (2002) The UK floods of 2000–2001: a hydrometeorological appraisal. Water Environ J 16:180–188. doi: 10.1111/j.1747-6593.2002.tb00392.x CrossRefGoogle Scholar
  74. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci U S A 101(12):4136–4141CrossRefGoogle Scholar
  75. McCallum E, Heming J (2006) Hurricane Katrina: an environmental perspective. Philos Transact A Math Phys Eng Sci 364(1845):2099–2115. doi: 10.1098/rsta.2006.1815 CrossRefGoogle Scholar
  76. McMahon TA, Kiem AS, Peel MC, Jordan PW, Pegram GS (2008) A new approach to stochastically generating six-monthly rainfall sequences based on Empirical Mode Decomposition. J Hydrometeorol 9:1377–1389CrossRefGoogle Scholar
  77. Merz B, Hall J, Disse M, Schumann A (2010) Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci 10:509–527CrossRefGoogle Scholar
  78. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more intense precipitation extremes. Nature 470:378–381CrossRefGoogle Scholar
  79. Mudersbach C, Jensen J. Nonstationary extreme value analysis of annual maximum water levels for designing coastal structures on the German North Sea coastline. J Flood Risk Manage. 2010;3(1):52–62. doi: 10.1111/j.1753-318X.2009.01054.x.CrossRefGoogle Scholar
  80. Nathan RJ, Weinmann PE (1995) The estimation of extreme floods – the need and scope for revision of our national guidelines. Aust J Water Resour 1:1Google Scholar
  81. Nathan RJ, Weinmann PE (2001) Estimation of large and extreme floods for medium and large catchments: book VI. Australian rainfall and runoff – a guide to flood estimation, 4th edn. Engineers Australia, National Committee for Water Engineering, AustraliaGoogle Scholar
  82. Nathan RJ, Weinmann PE, Hill PI (2002) Use of a Monte Carlo framework to characterise hydrological risk. ANCOLD Bull (122):55–64 Dec 2002Google Scholar
  83. Ntelekos AA, Oppenheimer M, Smith JA, Miller AJ (2010) Urbanization, climate change and flood policy in the United States. Clim Change 103(3–4):597–616. doi: 10.1007/s10584-009-9789-6.CrossRefGoogle Scholar
  84. OECD (2008) OECD environmental outlook to 2030. OECD Publishing, doi: 10.1787/9789264040519-en.
  85. O’Gorman P, Schneider T (2009) Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Climate 22(21):5676–5685. doi: 10.1175/2009JCLI2701.1 CrossRefGoogle Scholar
  86. Ohara N, Kavvas ML, Kure S, Chen ZQ, Jang S, Tan E (2011) Physically based estimation of maximum precipitation over American River Watershed. California J Hydrol Eng 351–361. doi: 10.1061/(ASCE)HE.1943-5584.0000324.
  87. Ouarda TBMJ, Rasmussen PF, Bobée B, Bernier J (1998) Use of historical information in hydrologic frequency analysis. Water Sci J/Revue des Sciences de l’Eau 11:41–49Google Scholar
  88. Peel MC, Blöschl G (2011) Hydrological modelling in a changing world. Prog Phys Geogr 35(2):249–261. doi: 10.1177/0309133311402550 CrossRefGoogle Scholar
  89. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Statist 28(2):126–135CrossRefGoogle Scholar
  90. Plate EJ (2002) Flood risk and flood management. J Hydrol 267:2–11CrossRefGoogle Scholar
  91. Pollan M (2009) Food rules: an eaters manual. Penguin Press, New York, 112 ppGoogle Scholar
  92. Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16(6):1137–1150. doi:10.1002/hyp. 1054CrossRefGoogle Scholar
  93. Pyke CB (1975) Some aspects of the influence of abnormal eastern equatorial ocean surface temperature upon weather patterns in the Southwestern United States. Final report, United States Navy Contract N-0014-75-C-0126. University of California, Los Angeles, CAGoogle Scholar
  94. Reed DW (2011) Letters in applied hydrology, DWR Consult, 88 ppGoogle Scholar
  95. Reeves J, Chen J, Wang XL, Lund R, Lu QQ (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46(6):900–915. doi: 10.1175/JAM2493.1 CrossRefGoogle Scholar
  96. Rezacova D, Pesice P, Sokol Z (2005) An estimation of the probable maximum precipitation for river basins in the Czech Republic. Atmos Res 77(1–4):407–421. doi: 10.1016/j.atmosres.2004.10.011 CrossRefGoogle Scholar
  97. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137(10):3233–3253. doi: 10.1175/2009MWR2861.1 CrossRefGoogle Scholar
  98. Robson A, Reed D (1999) Statistical procedures for flood frequency estimation. In: Flood estimation handbook, vol 3. Institute of Hydrology, Crowmarsh Gifford/WallingfordGoogle Scholar
  99. Schneider SH, Kuntz-Duriseti AC (2000) Costing non-linearities, surprises and irreversible events. Pacific Asian J Energy 10:81–106Google Scholar
  100. Schwarz FK (1972) A proposal for estimating tropical storm Probable Maximum Precipitation (PMP) for sparse data regions. Floods and droughts proceedings second international symposium in hydrology, Fort Collins, Colorado, 11–13 Sept 1972Google Scholar
  101. Seidou O, Ouarda TBMJ, Barbet M, Bruneau P, Bobée B (2006) A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour Res 42:W11408. doi:10.1029/2005WR004397, 1-21CrossRefGoogle Scholar
  102. Sheffer NA, Enzel Y, Grodek T, Waldmann N, Benito G (2003) Claim of largest flood on record proves false. EOS Trans Am Geophys Union 84:109CrossRefGoogle Scholar
  103. Stainforth DA, Downing TE, Washington R, Lopez A, New M (2007) Issues in the interpretation of climate model ensembles to inform decisions. Philos Trans R Soc A-Math Phys Eng Sci 365:2163–2177CrossRefGoogle Scholar
  104. Stedinger JR, Lu L-H (1995) Appraisal of regional and index flood quantile estimators. Stoch Environ Res Risk 9(1):49–75. doi: 10.1007/BF01581758 Google Scholar
  105. Strupczewski W, Singh V, Mitosek H (2001) Non-stationary approach to at-site flood frequency modelling III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi: 10.1016/S0022-1694(01)00399-7 CrossRefGoogle Scholar
  106. Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34:612–618CrossRefGoogle Scholar
  107. Sugahara S, Rocha RP, Silveira R (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int J Climatol 29:1339–1349CrossRefGoogle Scholar
  108. Svensson S, Jones DA (2010) Review of rainfall frequency estimation methods. J Flood Risk Manag 3:296–313CrossRefGoogle Scholar
  109. Swain RE, Bowles D, Ostenaa D (1998) A framework for characterization of extreme floods for dam safety risk assessments. In: Proceedings of the 1998 USCOLD annual lecture, Buffalo, New York, August 1998Google Scholar
  110. Thompson SM (2003) Duration of probable maximum precipitation on lake catchments: alternative analysis. J Hydrol Eng 8(4):190. doi:10.1061/(ASCE)1084-0699(2003) 8:4(190)CrossRefGoogle Scholar
  111. Thyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45(3):1–22. doi: 10.1029/2008WR006825 Google Scholar
  112. Toreti A, Kuglitsch FG, Xoplaki E, Della-Marta PM, Aguilar E, Prohom M et al (2011) A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series. Int J Climatol 31(4):630–632. doi: 10.1002/joc.2088 CrossRefGoogle Scholar
  113. van den Brink HW, Können GP (2008) The statistical distribution of meteorological outliers. Geophys Res Lett 35:L23702CrossRefGoogle Scholar
  114. Vaze J, Post DA, Chiew FHS, Perraud J-M, Viney NR, Teng J (2010) Climate non-stationarity – validity of calibrated rainfall-runoff models for use in climate change studies. J Hydrol 394(3–4):447–457. doi: 10.1016/j.jhydrol.2010.09.018 CrossRefGoogle Scholar
  115. Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32(8):1255–1266CrossRefGoogle Scholar
  116. Vogel RM (2010) Flood magnification factors in the United States. Workshop on nonstationarity, hydrologic frequency analysis, and water management, Boulder, Colorado, 13–15 Jan 2010. Colorado Water Institute Information Series No. 109Google Scholar
  117. Vogel RM, Matalas NC, England JF, Castellarin A (2007) An assessment of exceedance probabilities of envelope curves. Water Resour Res 43(7):1–11. doi: 10.1029/2006WR005586 CrossRefGoogle Scholar
  118. Wang QJ (1997) LH moments for statistical analysis of extreme events. Water Resour Res 33(9):2841–2848CrossRefGoogle Scholar
  119. Wang QJ, Robertson DE, Chiew FHS (2009) A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45:W05407. doi: 10.1029/2008WR007355 CrossRefGoogle Scholar
  120. Water Utility Climate Alliance (2010) Decision support planning methods: incorporating climate change uncertainties into water planning, January 2010 http://www.wucaonline.org/html/actions_publications.html.
  121. Water Utility Climate Alliance: Decision Support Planning Methods: Incorporating climate change uncertainties into water planning (2010) Retrieved 7 Apr 2011 from http://www.wucaonline.org/html/
  122. Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406(1–2):119–128. doi: 10.1016/j.jhydrol.2011.06.014 CrossRefGoogle Scholar
  123. Westra S, Varley I, Jordan P, Nathan R, Ladson A, Sharma A (2010) Addressing climatic non-stationarity in the assessment of flood risk. Aust J Water Resour 14(1):1–16Google Scholar
  124. Wilby RL, Troni J, Biot Y, Tedd L, Hewitson BC, Smith DM, Sutton RT (2009) A review of climate risk information for adaptation and development planning. Int J Climatol 1215:1193–215. doi: 10.1002/joc.CrossRefGoogle Scholar
  125. Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Climatol 45:1181–1189. doi: 10.1175/JAM2404.1 CrossRefGoogle Scholar
  126. Willems P (2000) Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types. J Hydrol 233(1–4):189–205CrossRefGoogle Scholar
  127. WMO (1986) Manual for estimation of probable maximum precipitation. Second ed. Operational hydrology report no. 1, WMO – No. 332, Geneva.Google Scholar
  128. WMO (2009) Manual on estimation of Probable Maximum Precipitation (PMP). WMO-No. 1045Google Scholar
  129. Yip S, Ferro CAT, Stephenson DB, Hawkins E (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim doi: 10.1175/2011JCLI4085.1.
  130. Zhu Y, Newell RE (1998) A proposed algorithm for moisture fluxes from atmospheric rivers. Mon Weather Rev 126:725–35.CrossRefGoogle Scholar
  131. Ziervogel G, Johnston P, Matthew M, Mukheibir P (2010) Using climate information for supporting climate change adaptation in water resource management in South Africa. Clim Chang 103:537–554. doi: 10.1007/s10584-009-9771-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  2. 2.Climate and Water DivisionBureau of MeteorologyMelbourneAustralia

Personalised recommendations