Skip to main content

Uncertainties in Projections of Future Changes in Extremes

  • Chapter
  • First Online:
Extremes in a Changing Climate

Part of the book series: Water Science and Technology Library ((WSTL,volume 65))

Abstract

Water resource managers share a common challenge in understanding what climate change could mean for future hydroclimate extremes. In order to make decisions about whether to invest in adaptation measures today or to wait for more convincing information, it is critical that managers understand the uncertainties of projecting changes in extremes. Uncertainties arise from several methodological choices including criteria that drive selection of global climate projection information to frame the assessment, whether and how to bias-correct global projection information, and how to represent local controls on how to spatially downscale translations of these projections. This chapter highlights such uncertainties, focusing on projected changes in two precipitation metrics: annual total and annual maximum daily amount, and for both typical (i.e. median metrics) and extreme conditions (i.e. annual totals related to drought, having 0.01 and 0.05 cumulative probabilities; and, annual maximum daily amounts related to floods, having 0.95 and 0.99 cumulative probabilities). The evaluation is conducted on 53 daily precipitation projections over the contiguous U.S., southern Canada and northern Mexico. Focusing on two future periods, and the chapter presents: (a) assessed changes in typical metric conditions and determining their significance, (b) assessed changes in extreme metric conditions, (c) decomposition of uncertainties in both types of changes relative to three sources of global climate projection uncertainty (emissions scenario, global climate model, internal variability), and (d) characterization of how projected changes may be sensitive to spatial downscaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset, available at: http://www-pcmdi.llnl.gov/projects/cmip/index.php. Support of this dataset is provided by the Office of Science, U.S. Department of Energy.

  2. 2.

    For the ECHAM5/MPI-OM model, PCMDI did not contain projections of the A1b emissions scenario.

  3. 3.

    The resulting REGRID, BC and BCCA projections are available at the online Bias Correction and Downscaled WCRP CMIP3 Climate Projections archive (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html).

References

  • Alexander LV et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419(6903):224–232

    Article  Google Scholar 

  • Annan JD, Hargreaves JC (2010) Reliability of the CMIP3 Ensemble. Geophys Res Lett 37:L02703. doi:10.1029/2009GL041994

    Article  Google Scholar 

  • Brekke LD, Dettinger MD, Maurer EP, Anderson M (2008) Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Clim Chang 89(3–4):371–394

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, 94pp

    Google Scholar 

  • Crosbie RS, Dawes WR, Charles SP, Mpelasoka FS, Aryal S, Barron O, Summerell GK (2) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38:L11406. doi:10.1029/2GL047657

    Article  Google Scholar 

  • Delworth TL et al (2005) GFDL’s CM2 global coupled climate models part 1: formulation and simulation characteristics. J Climate 19:643–674

    Article  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, New York

    Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Mara P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gibbons JD (1985) Nonparametric statistical inference. Marcel Dekker, New York

    Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D06104)

    Google Scholar 

  • Goodess C (ed) (2005) STARDEX: statistical and regional dynamically downscaling of extremes for European regions. Detailed project report: January 2002 to July 2005. Section 6: detailed report, related to overall project duration. Climatic Research Unit, University of East Anglia, Norwich, UK, 49 pp

    Google Scholar 

  • Hahn GJ, Shapiro SS (1994) Statistical models in engineering. Wiley, Hoboken

    Google Scholar 

  • Hawkins E, Sutton RT (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107

    Article  Google Scholar 

  • Hawkins E, Sutton RT (2010) The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn. doi:10.1007/s00382-010-0810-6

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26(10):1397–1415

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19(21):5686–5699

    Article  Google Scholar 

  • Hidalgo HG, Dettinger MD, Cayan DR (2008) Downscaling with constructed analogues: daily precipitation and temperature fields over the United States. Report CEC-500-2007-123 from the California Energy Commission, Public Interest Energy Research Program, Sacramento, CA, 62 pp

    Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis, an approach based on L-moments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • IPCC (2000) In: Nakicenovic N, Swart R (eds) Emissions scenarios. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, 570 pp

    Google Scholar 

  • IPCC (2007) In: Alley R et al (eds) Climate change 2007: the physical science basis – summary for policymakers, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 18 pp

    Google Scholar 

  • IPSL (2005) The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace des Sciences de l’Environnement Global, Paris, p 73

    Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J Climate 19:3952–3972

    Article  Google Scholar 

  • K-1 model developers (2004) In: Hasumi H, Emori S (eds) K-1 coupled model (MIROC) description, K-1 technical report, 1. Center for Climate System Research, University of Tokyo, Tokyo, 34 pp

    Google Scholar 

  • Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (2008) Weather and climate extremes in a changing climate – regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, Synthesis and Assessment Product 3.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, 180 pp

    Google Scholar 

  • Kendon EJ, Rowell DP, Jones RG, Buonomo E (2008) Robustness of future changes in precipitation extremes. J Climate 21:4280–4297

    Article  Google Scholar 

  • Kotz S, Nadarajah S (2000) Extreme value distributions: theory and applications. Imperial College Press, London

    Book  Google Scholar 

  • Legutke S, Voss, R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. Technical report, No. 18, German Climate Computer Centre (DKRZ), Hamburg, 62 pp

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(L06805)

    Google Scholar 

  • Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12:551–563

    Article  Google Scholar 

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J Climate 15(22):3237–3251

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14:1125–1138. doi:10.5194/hess-14-1125-2010

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, Mcavaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset – a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394

    Article  Google Scholar 

  • Mitchell JFB, Johns TC, Eagles M, Ingram WJ, Davis RA (1999) Towards the construction of climate change scenarios. Clim Change 41:547–581

    Article  Google Scholar 

  • Mote P, Brekke L, Duffy PB, Maurer E (2) Guidelines for constructing climate scenarios. Eos Trans AGU 92(31). doi:10.1029/2EO310001

  • Perica S, Dietz S, Heim S, Hiner L, Maitaria K, Martin D, Pavlovic S, Roy I, Trypaluk C, Unruh D, Yan F, Yekta M, Zhao T, Bonnin G, Brewer D, Chen L-C, Parzybok T, Yarchoan J (2) NOAA Atlas 14 precipitation-frequency Atlas of the United States volume 6 version 2.0. California, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring, Maryland, 239 pp

    Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci U S A 106(21):8441–8446

    Google Scholar 

  • Pierce DW, Das T, Cayan DR, Maurer EP, Miller N, Bao Y, Kanamitsu M, Yoshimura K, Snyder MA, Sloan LC, Franco G, Tyree M (2) Probabilistic estimates of California climate change by the 2060s using statistical and dynamical downscaling. Report CEC-XXX-XXXX by the California Energy Commission, Public Interest Energy Research Program, Sacramento, CA, 67 pp (in review)

    Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103, 36 pp

    Google Scholar 

  • Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW, Wigley TML, Mears C, Wentz FJ, Bruggemann W, Gillett NP, Klein SA, Solomon S, Stott PA, Wehner MF (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci U S A 106(35):14778–14783

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184

    Article  Google Scholar 

  • Shepard DS (1984) Computer mapping: the SYMAP interpolation algorithm. In: Gaile GL, Willmott CJ (eds) Spatial statistics and models. Reidel, Norwell, pp 133–145

    Google Scholar 

  • Stainforth DA, Allen MR, Tredger ER, Smith LA (2007) Confidence, uncertainty and decision-support relevance in climate predictions. Philos Trans R Soc A 365:2145–2161. doi:10.1098/rsta.2007.2074

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365(1857):2053

    Article  Google Scholar 

  • U.S. Global Climate Research Program (USGCRP) (2009) In: Karl TR, Melillo JM, Peterson TC (eds) Global climate change impacts in the United States. Cambridge University Press, Cambridge, 196 pp

    Google Scholar 

  • Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global climate model performance over Alaska and Greenland. J Climate 21:6156–6174

    Article  Google Scholar 

  • Watterson IG, Dix MR (2003) Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J Geophys Res 108(D13):4379. doi:10.1029/2002JD002928

    Article  Google Scholar 

  • Wehner M (2010) Sources of uncertainty in the extreme value statistics of climate data. Extremes 13:205–217

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames. UK. Water Resour Res 42:W02419. doi:10.1029/2005WR004065

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, vol 59, 2nd edn, International geophysics series. Academic, London, 627 pp

    Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the Eastern United States. J Geophys Res Atmos 107(D20):4429. doi:10.1029/2001JD000659

    Article  Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The new Meteorological Research Institute coupled GCM (MRI-CGCM2) – model climate and variability. Pap Meteor Geophys 51:47–88

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution of the anonymous reviewers and discussions with Dr. Gilbert Compo in improving the manuscript. Dr. Barsugli was supported by the Western Water Assessment, a NOAA Regional Integrated Sciences and Assessments program at the University of Colorado and the NOAA Earth System Research Laboratory. Dr. Brekke was supported by the Reclamation Research and Development Office and Science and Technology Program. We also acknowledge the WCRP Working Group on Coupled Modeling as well as the archive hosts at Lawrence Livermore National Laboratory’s PCMDI and Green Data Oasis for their roles in respectively making available the WCRP CMIP3 multi-model dataset and the Bias Corrected and Downscaled WCRP CMIP3 Climate Projections dataset (containing REGRID, BC and BCCA data discussed herein).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi D. Brekke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brekke, L.D., Barsugli, J.J. (2013). Uncertainties in Projections of Future Changes in Extremes. In: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S. (eds) Extremes in a Changing Climate. Water Science and Technology Library, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4479-0_11

Download citation

Publish with us

Policies and ethics