The Secret of the Hominin Mind: An Evolutionary Story

  • Alexandra Maryanski
Part of the Handbooks of Sociology and Social Research book series (HSSR)


As Darwin and Wallace neatly surmised, organic evolution results from a selection process that acts to preserve traits better suited for a given habitat. And there is no better example of its potent influence than the hominin brain and mind. Why do humans have such large and complex brains? As a rule, larger brains are energy costly so we can assume that our encephalized brain evolved to meet environmental demands, and if so, clues should exist in the context of the problems it evolved to solve. As the control center for human activity, the brain directs all body functions—from our extraordinary sensorimotor skills to lots of mind-related business. It houses both a “social self” with a complex linguistic-based communication system to move ideas from one mind to another and an “individual self,” a rare character in the animal world that lends itself to a personal identity distinct from other conspecifics and to the taking of the role of others. The elusive social mind also has the novel capacity to engage in two distinctive types of sociality—the ability to form tight-knit kinship bonds or strong ties, a trait shared with all social mammals, and the ability to form loose-knit friendship bonds or weak-ties, a rare trait in the animal world but essential for the creation of large-scale societies with millions of individuals. What compelling demands in our ultimate history fostered such splendid cognitive traits?

The objective of this chapter is to review and interpret what is known about the evolution of the hominin brain with a focus on what was created. The human brain with its suite of novelties was not created by random mutations, a single adaptive package, or a concurrent sequence of events. Rather it was assembled in a variegated mosaic pattern over a span of nearly 60 million years of primate evolution. And, while the jury is still out, the bulk of the evidence on the hominin brain points to three key events that shaped the cognitive software that lies beneath its convoluted surface—the expansion of the primate neocortex and the shift to visual dominance, the selective “cheery picking” of the swinging Miocene apes, and the Pleistocene shift of Homo erectus to an open-country niche.


Late Miocene World Monkey Cortical Control Cranial Capacity Dental Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, E., Cooper, S., Thomson, G., & Parham, P. (2000). Common chimpanzees have greater diversity than humans at two of the three highly polymorphic MHC class I genes. Immunogenetics, 51, 410–424.Google Scholar
  2. Andrews, P. (1981). Species diversity and diet in monkeys and apes during the miocene. In C. B. Stringer (Ed.), Aspects of human evolution. London: Taylor & Francis.Google Scholar
  3. Andrews, P. (2007). The biogeography of hominid evolution. Journal of Biogeography, 34, 381–382.Google Scholar
  4. Andrews, P., & Kelley, J. (2007). Middle miocene dispersals of apes. Folia Primatol, 78, 328–343.Google Scholar
  5. Bailey, R., & Aunger, R. (1990). Humans as primates. The social relationships of Efe Pygmy men in comparative perspective. International Journal of Primatology, 11, 127–145.Google Scholar
  6. Barton, R. A. (1998). Visual specialization and brain evolution in primates. Proceedings of the Royal Society, London, B Biological Sciences, 265, 1933–1937.Google Scholar
  7. Begun, D. (2007). Fossil record of miocene hominoids. In W. Henke & T. Hardt (Eds.), Handbook of paleoanthropology 1 (pp. 921–977). Berlin: Springer.Google Scholar
  8. Benefit, B. R. (1999). Victoriapithecus: The key to old world monkey and catarrhine origins. Evolutionary Anthropology, 7, 155–174.Google Scholar
  9. Benefit, B., & McCrossin, M. (1997). Earliest known old world monkey skull. Nature, 388, 368–371.Google Scholar
  10. Bhatnagar, K. P., & Smith, T. D. (2007). The vomeronasal organ and its evolutionary loss in catarrhine primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 41–148). Amsterdam: Elsevier.Google Scholar
  11. Bloch, J., & Boyer, D. (2002). Grasping primate origins. Science, 298, 1606–1610.Google Scholar
  12. Bloch, J., & Boyer, D. (2007). New skeletons of Paleocene-Eocene plesiadapiformes: A diversity of arboreal positional behaviors in early primates. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 535–581). New York: Springer.Google Scholar
  13. Bradley, B. (2008). Reconstructing phylogenies and phenotypes: A molecular view of human evolution. Journal of Anatomy, 212, 337–353.Google Scholar
  14. Call, J., & Tomasello, M. (2007). The gestural communication of apes and monkeys. Mahwah: Lawrance Erlbaum.Google Scholar
  15. Callaway, E. (2011). Female australopiths seek brave new world. Nature, June 1, p. 1038. Google Scholar
  16. Campbell, F., & Maffer, L. (1976). Contrast and spatial frequency. In R. Held & W. Richards (Eds.), Recent progress in perception (Scientific American). San Francisco: W.H. Freeman and Company.Google Scholar
  17. Casagrande, V. A., & Khaytin, I. (2007). The evolution of parallel visual pathways in the brains of primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 87–119). Amsterdam: Elsevier.Google Scholar
  18. Chatterjee, H., Simon, H., Barnes, I., & Groves, C. (2009). Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology, 9, 259–278.Google Scholar
  19. Cheney, D. L., & Seyfarth, R. M. (1980). Vocal recognition in free-ranging vervet monkeys. Animal Behavior, 28, 739–751.Google Scholar
  20. Coleman, M. (2009). What do primates hear? a meta-analysis of all known nonhuman primate behavioral audiograms. International Journal of Primatology, 30, 55–91.Google Scholar
  21. Coleman, M., & Colbert, M. (2010). Correlation between auditory structures and hearing in non-human primates. Journal of Morphology, 27, 511–532.Google Scholar
  22. Coleman, M., Kay, R., & Colbert, M. (2010). Auditory morphology and hearing sensitivity in fossil new world monkeys. The Anatomical Record, 293, 1711–1721.Google Scholar
  23. Conroy, G. (1990). Primate evolution. New York: Methuen.Google Scholar
  24. Copeland, S., Sponheimer, M., de Ruiter, D., Lee-Thorp, J., Codron, D., le Roux, P., Grimes, V., & Richards, M. (2011). Strontium isotope evidence for landscape use by early hominins. Nature, 474, 76–78.Google Scholar
  25. Corruccini, R., Ciochon R., & McHenry H. (1975). Osteometric shape relationships in the wrist joint of some anthropoids. Folia Primatologioa, 24, 250–274.Google Scholar
  26. Deacon, T. W. (2007). The evolution of language systems in the human brain. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 529–547). Amsterdam: Elsevier.Google Scholar
  27. Dean, M. C., & Leakey, M. (2004). Enamel and dentine development and the life history profile of Victoriapithecus macinnesi from maboko island, Kenya. Annals of Anatomy, 186, 405–412.Google Scholar
  28. Deane, A. (2009). Early miocene catarrhine dietary behaviour: The influence of the red queen effect on incisor shape and curvature. Journal of Human Evolution, 56, 275–285.Google Scholar
  29. deWaal, F. B., Dindo, M., Freeman, C. A., & Hall, M. (2005). The monkey in the mirror: Hardly a stranger. Proceedings of the National Academy of Sciences, 102, 1140–1146.Google Scholar
  30. Dominy, N., Ross, C., & Smith, T. (2004). Evolution of the special senses in primates: Past, present and future. The Anatomical Record Part A, 281 A, 1078–1082.Google Scholar
  31. Durkheim, E. ([1895] 1938). The division of labor in society (George Simpson, Trans.). New York: The Free Press.Google Scholar
  32. Falk, D. (2000). Primate diversity. New York: W.W. Norton & Company.Google Scholar
  33. Falk, D. (2007). Evolution of the primate brain. In W. Henke & T. Hardt (Eds.), Handbook of paleoanthropology (Vol. 1, pp. 1133–1162). Berlin: Springer.Google Scholar
  34. Filler, A. (2007). Emergence and optimization of upright posture among hominiform hominoids and the evolutionary pathophysiology of back pain. Neurosurg Focus, 23, 1–6.Google Scholar
  35. Fleagle, J. (1999). Primate adaptation and evolution. New York: Academic.Google Scholar
  36. Fleagle, J., Shea, J., Grine, F., Baden, A., & Leakey, R. (2010). Out of Africa (Vol. 1). London: Springer.Google Scholar
  37. Fortelius, M., & Hokkanen, A. (2001). The trophic context of hominoid occurrence in the later miocene of Western Eurasia: A primate-free view. In L. de bonis, G. Koufos, & P. Andrews (Eds.), Hominoid evolution and climatic change in Europe (pp. 19–47). Cambridge: Cambridge University Press.Google Scholar
  38. Freides, D. (1973). Human information processing and sense modality: Cross-modal functions, information complexity, memory, and deficit. Psychological Bulletin, 81(5), 284–310.Google Scholar
  39. Gagneux, P., & Varki, A. (2001). Genetic differences between humans and great apes. Molecular Phylogenetics and Evolution, 18, 2–13.Google Scholar
  40. Gagneux, P. (2002). The genus pan: Population genetics of an endangered outgroup. Trends in Genetics , 18, 327–330.Google Scholar
  41. Gallup, G. G. (1998). Self-awareness and the evolution of social intelligence. Behavioral Processes, 42, 239–247.Google Scholar
  42. Gebo, D., Malit, N., & Nengo, I. (1997). New proconsuloid postcranials from the early Miocene of Kenya. Primates, 50, 311–319.Google Scholar
  43. Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69, 477–491.Google Scholar
  44. Glaser, D. (2007). The evolution of the sweetness receptor in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 121–128). Amsterdam: Elsevier.Google Scholar
  45. Glaser, D., Tinti, J. M., & Nofre, C. (1995). Evolution of the sweetness receptor in primates. 1. Why does alitame taste sweet in all prosimians and simians, and aspartame only in old world simians? Chemical Senses, 20, 573–584.Google Scholar
  46. Glazko, G. V., & Nei, M. (2003). Estimation of divergence times for major lineages of primate species. Molecular Biology and Evolution (Supplement), 20, 424–434.Google Scholar
  47. Glendenning, K. K., & Masterton, R. B. (1998). Comparative morphometry of mammalian central auditory systems: Variation in nuclei and form of the ascending system. Brain, Behavior and Evolution, 51, 59–89.Google Scholar
  48. Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Harvard University Press.Google Scholar
  49. Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.Google Scholar
  50. Gregory, W. (1916). Studies on the evolution of the primates. Bulletin of the American Museum of Natural History, 35, 239–355.Google Scholar
  51. Hackett, T. (2003). The comparative anatomy of the primate auditory cortex. In A. Ghazanfar (Ed.), Primate audition: Behavior and neurobiology (pp. 199–226). Boca Raton: CRC Press.Google Scholar
  52. Hackett, T. (2008). Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology, 19, 774–779.Google Scholar
  53. Halloway, R. (1978). The relevance of endocasts for studying primate brain evolution. In C. R. Noback (Ed.), Sensory systems of primates. New York: Plenum.Google Scholar
  54. Hamrick, M. (2001). Primate origins: evolutionary change in digital ray patterning and segmentation. Journal of Human Evolution, 40, 339–351.Google Scholar
  55. Hare, B. (2011). From hominoid to hominid mind: What changed and why? Annual Review of Anthropology, 40, 293–309.Google Scholar
  56. Harpendig, H., Gurven, M. R., et al. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences, 95, 1961–1967.Google Scholar
  57. Harrison, T., & Andrews, P. (2009). The anatomy and systematic position of the early miocene proconsulid from meswa bridge, Kenya. Journal of Human Evolution, 56, 479–496.Google Scholar
  58. Heffner, R. (2004). Primate hearing from a mammalian perspective. The Anatomical Record, 281A, 1111–1122.Google Scholar
  59. Heffner, H., & Heffner, R. (2008). High frequency hearing. In P. Dallos, D. Oertel, & R. Hoy (Eds.), Handbook of the senses: Audition (pp. 55–60). New York: Elsevier.Google Scholar
  60. Heidegard, H., Beil, B., Hilbig, H., Call, J., & Bidmon, H.-J. (2009). Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny. Brain Structure and Function, 213, 489–497.Google Scholar
  61. Hogg, C., Neveu, M., Stokkan, K.-A., Folkow, L., Cottrill, P., Douglas, R., Hunt, D., & Jeffery, G. (2011). Arctic reindeer extend their visual range into the ultraviolet. The Journal of Experimental Biology, 214, 2014–2019.Google Scholar
  62. Holloway, R. (1968). The evolution of the primate brain: Some aspects of quantitative relations. Brain Research, 7, 121–172.Google Scholar
  63. Hoover, K. (2010). Smell with inspiration: The evolutionary significance of olfaction. Yearbook of Physical Anthropology, 53, 63–74.Google Scholar
  64. Israfil, H. S. M., Zehr, A. R., Mootnick, M. R., & Steiper, M. E. (2011). Unresolved molecular phylogenies of gibbons and siamangs (family: Hylobatidae) based on mitochondrial, Y-linked loci, and X linked loci indicate a rapid miocene radiation or sudden vicariance event. Molecular Phylogenetics and Evolution, 58, 447–455.Google Scholar
  65. Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N., & Qinqu, X. (2000). The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. Journal of Human Evolution, 39, 131–157.Google Scholar
  66. Jacobs, G. H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews of Cambridge Philosophical Society, 68, 413–471.Google Scholar
  67. Jacobs, G. H. (2004). Photopigment variations and the evolution of anthropoid vision. In C. F. Ross & R. F. Kay (Eds.), Anthropoid origins: New visions (pp. 645–664). New York: Kluwer/Plenum.Google Scholar
  68. Jacobs, G. H. (2007). The comparative biology of photopigments and color vision in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 80–85). Amsterdam: Elsevier.Google Scholar
  69. Jacobs, G. H., & Deegan, J. F. (1999). Uniformity of colour vision in old world monkeys. Proceedings of the Royal Society London B, 266, 2023–2028.Google Scholar
  70. Jacobs, G. H., & Williams, G. A. (2001). The prevalence of defective color vision in old world monkeys and apes. Color Research and Application [supplement], 26, 123–127.Google Scholar
  71. Janečka, J., Miller, W., Pringle, T., Wiens, F., Zitzmann, A., Helgen, K., Springer, M., & Murphy, W. (2007). Molecular and genomic data identify the closest living relative of primates. Science, 318, 792–794.Google Scholar
  72. Jeffers, R., & Lehiste, I. (1979). Principles and methods of historical linguistics. Cambridge, MA: MIT Press.Google Scholar
  73. Jerison, H. J. (1973). Evolution of the brain and behavior. New York: Academic.Google Scholar
  74. Jerison, H. J. (2007). What fossils tell us about the evolution of the neocortex. In J. Kaas (Ed.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 1–12). Amsterdam: Elsevier.Google Scholar
  75. Kagaya, M., Ogihara, N., & Nakatsukasa, M. (2010). Is the clavicle of apes long? an investigation of clavicular length in relation to body mass and upper thoracic width. International Journal of Primatology, 31, 209–217.Google Scholar
  76. Kass, J. (2007). The evolution of sensory and motor systems in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 35–57). Amsterdam: Elsevier.Google Scholar
  77. Kass, J. (2008). The evolution of the complex sensory and motor system of the human brain. Brain Research Bulletin, 75, 384–390.Google Scholar
  78. Kass, J., & Pons, T. P. (1988). The somatosensory system of primates. In H. D. Steklis & J. Erwin (Eds.), Comparative primate biology, Vol. 4: Neurosciences (pp. 421–468). New York: Alan R. Liss.Google Scholar
  79. Kaessmann, H., & Pääbo, S. (2002). The genetic history of humans and the great apes. Journal of Internal Medicine, 251, 1–18.Google Scholar
  80. Kasserman, H., Wiebe, V., & Pääbo, S. (1999). Extensive nuclear DNA sequence diversity among chimpanzees. Science, 286, 1159–1161.Google Scholar
  81. Kay, R., Ungar, P. (1997). Dental evidence for diet in some Miocene Catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In D. Begun, C. Ward, & M. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoid evolution and adaptation. New York: Plenum.Google Scholar
  82. Keller, G., & Barron, J. (1987). Paleodepht distribution of Neogene hiatuses. Paleoceanography, 2, 697–713.Google Scholar
  83. Keller, H. (1904). The world I live in. London: Hodder & Stoughton.Google Scholar
  84. Kelley, J. (2002). Life-history evolution in miocene and extant apes. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change. Baltimore: John Hopkins University Press.Google Scholar
  85. Kelley, J., & Smith, T. M. (2003). Age at first molar emergence in early miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. Journal of Human Evolution, 44, 307–329.Google Scholar
  86. King, B. J. (2004). Dynamic dance: Nonvocal communication in the African great apes. Cambridge: Harvard University Press.Google Scholar
  87. King, A., & Nelken, I. (2009). Unraveling the principles of auditory cortical processing: Can we learn from the visual system? Nature Neuroscience, 12, 698–701.Google Scholar
  88. Kirk, C. (2004). Comparative morphology of the eye in primates. The Anatomical Record Part A, 281A, 1095–1103.Google Scholar
  89. Kirk, C. (2006). Visual influences on primate encephalization. Journal of Human Evolution, 51, 76–90.Google Scholar
  90. Krubitzer, L., & Kaas, J. (2005). The evolution of neocortex in mammals: How is phenotypic diversity generated. Current Opinion in Neurobiology, 15, 444–453.Google Scholar
  91. Le Gros Clark, W. E. (1962). The antecedents of man. Chicago: Quadrangle Books.Google Scholar
  92. Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception and Psychophysics, 71, 1439–1459.Google Scholar
  93. Lemelin, P., & Jungers, W. (2007). Body size and scaling of the hands and feet of prosimian primates. American Journal of Physical Anthropology, 133, 828–840.Google Scholar
  94. Lewis, O. J. (1974). The wrist articulations of the anthropoidea. In F. Jenkins (Ed.), Primate locomotion (pp. 143–167). New York: Academic.Google Scholar
  95. Lucas, P., Dominy, N., Riba-Hernandex, P., Stoner, K., Yamashita, N., LorÍa-Calderón, E., Petersen-Pereira, W., Rojas-Durán, Y., Salas-Pena, R., Solis-Madrigal, S., Osorio, D., & Darvell, B. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57, 2636–2643.Google Scholar
  96. Lyon, D. C. (2007). The evolution of visual cortex and visual systems. In J. Kaas & L. Krubitzer (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 267–306). Amsterdam: Elsevier.Google Scholar
  97. Machalek, R. (1992). The evolution of macrosociety: Why are large societies rare? Advances in Human Ecology, 1, 33–64.Google Scholar
  98. Maclatchy, L. (2004). The oldest ape. Evolutionary Anthropology, 13, 90–103.Google Scholar
  99. MacLatchy, L., Gebo, D., Kityo, R., & Pilbeam, D. (2000). Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. Journal of Human Evolution, 39, 159–183.Google Scholar
  100. Martin, R. D. (1990). Primate origins and evolution: A phylogenetic construction. London: Chapman & Hall.Google Scholar
  101. Maryanski, A. R. (1987). African ape social structure: Is there strength in weak ties? Social Networks, 9, 191–215.Google Scholar
  102. Maryanski, A. (1992). The last ancestor: An ecological network model on the origins of human sociality. Advances in Human Ecology, 2, 1–32.Google Scholar
  103. Maryanski, A. (1995). African ape social networks: A blueprint for reconstructing early hominid social structure. In J. Steele & S. Shennan (Eds.), Archaeology of human ancestry. London: Routledge.Google Scholar
  104. Maryanski, A. (1996). Was speech an evolutionary afterthought? In B. Velichkovsky & D. Rumbaugh (Eds.), Communicating meaning: The evolution and development of language (pp. 79–97). Mahwah: Lawrence Erlbaum.Google Scholar
  105. Maryanski, A. (1997). Primate communication and the ecology of a language niche. In U. Segerstråle & P. Molnár (Eds.), Nonverbal communication: Where nature meets culture (pp. 191–209). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  106. Maryanski, A., & Turner, J. (1992). The social cage: Human nature and the evolution of society. Stanford: Stanford University Press.Google Scholar
  107. Masterton, B., & Diamond, I. (1973). Hearing: Central neural mechanisms. In E. Carterette & M. Friedman (Eds.), Handbook of perception no. 3, biology of perceptual systems (pp. 408–448). New York: Academic.Google Scholar
  108. Mead, G. H. (1934). Mind, self and society. Chicago: University of Chicago Press.Google Scholar
  109. Meldrum, J. (2006). Sasquatch: Legend meets science. New York: Forge.Google Scholar
  110. Miller, E. R., Benefit, B. R., McCrossin, M. L., Plavan, J. M., Leakey, M. G., El-Barkooky, A. N., Hamdan, M. A., Abdel Gawad, M. K., Hassan, S. M., & Simons, E. L. (2009). Systematics of early and middle miocene old world monkeys. Journal of Human Evolution, 57, 195–211.Google Scholar
  111. Molnár, Z., Tavare, A., & Cheung, A. F. P. (2007). The origin of neocortex: Lessons from comparative embryology. In J. Kaas & L. Krubitzer (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 13–26). Amsterdam: Elsevier.Google Scholar
  112. Nakatsukasa, M. (2008). Comparative study of moroto vertebral specimens. Journal of Human Evolution, 55, 581–588.Google Scholar
  113. Napier, J. (1963). Brachiators and brachiators. In J. Napier & N. A. Barniat (Eds.), The primates. Symposia of the Zoological Society of London 10.Google Scholar
  114. Napier, J. R., & Napier, P. H. (1985). The natural history of the primates. Cambridge, MA: MIT Press.Google Scholar
  115. Nofre, C., Tinti, J. M., & Glaser, D. (1996). Evolution of the sweetness receptor in primates. 11. “Gustatory responses of non-human primates to nine compounds known to be sweet in man”. Chemical Senses, 21, 747–762.Google Scholar
  116. Norman, P., & Don Cameron, H. (1977). Cladistic methods in textual, linguistic, and phylogenetic analysis. Systematic Zoology, 26, 380–385.Google Scholar
  117. Oxnard, C. E. (1963). Locomotor adaptation in the primates. In J. Napier, W. A. Barnicot (Eds.), The Primates. Symposia of the Zoological Society of London 10.Google Scholar
  118. Pilbeam, D., & Young, N. (2004). Hominoid evolution: Synthesizing disparate data. Comptes Rendus Palevol, 3, 305–321.Google Scholar
  119. Platnick, N., & Cameron, D. (1977). Cladistic methods in textual, linguistic, and phylogenetic analysis. Systematic Zoology, 26, 380–385.Google Scholar
  120. Plotnik, J., de Waal, F., & Reiss. D. (2006) Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences USA, 103, 17053–17057.Google Scholar
  121. Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209–228.Google Scholar
  122. Preuschoft, S., & Preuschoft, H. (1994). Primate nonverbal communication: Our communication heritage. In W. Nöth (Ed.), Origins of semiosis (pp. 66–100). Berlin: Mouton de Gruyter.Google Scholar
  123. Preuss, T. M. (2007). Primate brain evolution in phylogenetic context. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 1–34). Amsterdam: Elsevier.Google Scholar
  124. Purvis, D., White, L., Zheng, D., Andrews, T., & Riddle, D. (1996). Brain size, behavior and the allocation of neural space. In D. Magnusson (Ed.), The lifespan development of individuals: Behavioral, neurobiological, and psychosocial perspectives. Cambridge: Cambridge University Press.Google Scholar
  125. Raaum, R., Kirstin, L., Sterner, N., Noviello, C., Stewart, C., & Disotell, T. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257.Google Scholar
  126. Radinsky, L. B. (1970). The fossil evidence of prosimian brain evolution. In C. Noback & W. Montagna (Eds.), The primate brain. New York: Appleton.Google Scholar
  127. Radinsky, L. B. (1974). The fossil evidence of anthropoid brain evolution. American Journal of Physical Anthropology, 41, 15–28.Google Scholar
  128. Rakic, P., & Kornack, D. (2001). Neocortical expansion and elaboration during primate evolution: A view from neuroembryology. In K. R. Gibson & D. Falk (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 30–56). Cambridge: Cambridge University Press.Google Scholar
  129. Rakic, P., & Kornack, D. (2007). The development and evolutionary expansion of the cerebral cortex in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 243–259). Amsterdam: Elsevier.Google Scholar
  130. Relethford, J. (2010). The human species. Boston: McGraw Hill.Google Scholar
  131. Ross, C. F., & Martin, R. D. (2007). The role of vision in the origin and evolution of primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 59–76). Amsterdam: Elsevier.Google Scholar
  132. Rossie, J. B. (2005). “Anatomy of the nasal cavity and paranasal sinuses in aegyptopithecus and early Miocene African catarrhines. American Journal of Physical Anthropology, 126(126), 250–267.Google Scholar
  133. Rouquier, S., & Giorgi, D. (2007). The loss of olfactory receptor genes in human evolution. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 129–139). Amsterdam: Elsevier.Google Scholar
  134. Rowe, T., Macrini, T., & Luo, Zhe-Xi. (2011). Fossil evidence on origin of the mammalian brain. Science, 332, 955–957.Google Scholar
  135. Savage-Rumbaugh, S., & Lewin, R. (1994). Kanzi: The ape at the brink of the human mind. New York: Wiley.Google Scholar
  136. Savage-Rumbaugh, S. J. M., Seveik, J., Brakke, K., Williams, S. L., & Rumbaugh, D. (1993). Language comprehension in the ape and child. Monographs of the society for research in child development (Vol. 58, 3–4). Chicago: University of Chicago Press.Google Scholar
  137. Seiffert, E., Perry, J., Simons, E., & Boyer, D. (2009). Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature, 461, 118–121.Google Scholar
  138. Semendeferi, K., & Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38, 317–332.Google Scholar
  139. Sherwood, C. C., & Hof, P. R. (2007). The evolution of neuron types and cortical histology in apes and humans. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 355–378). Amsterdam: Elsevier.Google Scholar
  140. Sherwood, C., Subiaul, F., & Zawidzki, T. (2008). A natural history of the human mind: Tracing evolutionary changes in brain and cognition. Journal of Anatomy, 212, 426–454.Google Scholar
  141. Silcox, M. T. (2007). Primate taxonomy, plesiadapiforms, and approaches to primate origins. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 143–178). New York: Plenum Press.Google Scholar
  142. Silcox, M., Benham, A., & Block, J. (2010). Endocasts of microsyops (microsyopidae, primates) and the evolution of the brain in primitive primates. Journal of Human Evolution, 58, 505–521.Google Scholar
  143. Simons, E. (1987). New faces of aegyptopithecus from the oligocene of Egypt. Journal of Human Evolution, 16, 273–289.Google Scholar
  144. Smith, T. D., Bhatnagar, K. P., Shimp, K. L., et al. (2002). Histological definition of the vomeronasal organ in humans and chimpanzees with a comparison to other primates. Anatomical Record, 265, 176–192.Google Scholar
  145. Snowdon, C. (1990). Language capacities of Non-human animals. Yearbook of Physical Anthropology, 33, 215–243.Google Scholar
  146. Sousa, A., & Wood, B. (2007). The hominin fossil record and the emergence of the modern human central nervous system. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 292–336). Amsterdam: Elsevier.Google Scholar
  147. Stanford, C., Allen, J., & Antón, S. (2013). Biological anthropology. Boston: Pearson.Google Scholar
  148. Stebbins, G. L. (1969). The basis of progressive evolution. Chapel Hill: University of North Carolina Press.Google Scholar
  149. Stebbins, G. L. (1978). The dynamics of evolutionary change. In H. Evolution (Ed.), Ediated by noel korn (pp. 61–79). New York: Holt, Rinehart and Winston.Google Scholar
  150. Stein, P., & Rowe, B. (2011). Physical anthropology. New York: McGraw Hill.Google Scholar
  151. Suddenforf, T., & Collier-Baker, E. (2009). The evolution of primate visual self-recognition: Evidence of absence in lesser apes. Proceedings of the Royal Society B: Biological Sciences, 276, 1671–1677.Google Scholar
  152. Taylor, M. M., Lederman, S. J., & Gibson, R. H. (1973). Tactual perception of texture. In E. Carterrette & M. Friedman (Eds.), Handbook of perception (Vol. 5). New York: Academic.Google Scholar
  153. Temerin, L., & Cant, J. (1983). The evolutionary divergence of old world monkeys and apes. American Naturalist, 122, 335–351.Google Scholar
  154. Tomasello, M., & Call, J. (2007). Ape gestures and the origins of language. In J. Call & M. Tomasello (Eds.), The gestural communication of apes and monkeys (pp. 221–239). Mahwah: Lawrance Erlbaum.Google Scholar
  155. Tomasello, M., & Herrmann, e. (2010). Ape and human cognition: What’s The difference? Currrent Directions in Psychological Science, 19, 3–8.Google Scholar
  156. Turner, J., & Maryanski, A. (2005). Incest: Origins of the taboo. Boulder: Paradigm Press.Google Scholar
  157. Turner, J., & Maryanski, A. (2008). On the origin of societies by natural selection. Boulder: Paradigm Publishers.Google Scholar
  158. Von Senden, M. (1960). Space and sight. The perception of space and shape in the congenitally blind before and after operation (Peter Heath, Trans.). London: Methuen.Google Scholar
  159. Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry, 87, 231–238.Google Scholar
  160. Walker, A. D., Falk, R. S., & Pickford, M. (1983). The skull of Proconsul africanus: Reconstruction of cranial capacity. Nature, 305, 525–527.Google Scholar
  161. Ward, C. V. (1993). Torso morphology and locomotion in proconsul nyanzae. American Journal of Physical Anthropology, 92, 291–328.Google Scholar
  162. Ward, C., Kimbel, W., & Johanson, D. (2011). Complete fourth metatarsal and arches in the foot of australopithecus afarensis. Science, 331, 750–753.Google Scholar
  163. Whishaw, I. Q. (2003). Did a change in sensory control of skilled movements stimulate the evolution of the primate frontal cortex? Behavioral and Brain Sciences, 146, 31–41.Google Scholar
  164. Williams, B., Kay, R., & Kirk, C. (2010). New perspectives on anthropoid origins. Proceedings of the National Academy of Sciences, 107, 4797–4804.Google Scholar
  165. Wise, S. P. (2007). Evolution of ventral premotor cortex and the primate way of reaching. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 157–165). Amsterdam: Elsevier.Google Scholar
  166. Wolpoff, M. (1999). Paleoanthropology. Boston: McGraw-Hill.Google Scholar
  167. Young, N. (2003). A reassessment of living hominoid postcranial variability: Implications for ape evolution. Journal of Human Evolution, 45, 441–464.Google Scholar
  168. Zalmout, L., Sanders, W., MacLatchy, L., Gunnell, G., Al-Mufarreh, Y., Ali, M., Nasser, A.-A., Al-Masari, A., Al-Sobhi, S., Nadhra, A., Matari, A., Wilson, J., & Gingerich, P. (2010). New oligocene primate from Saudi Arabia and the divergence of apes and old world monkeys. Nature, 466, 360–365.Google Scholar
  169. Zhang, J., & Webb, D. M. (2003). Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proceedings of the National Academy of Sciences, 100, 8337–8341.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Department of SociologyUniversity of CaliforniaRiversideUSA

Personalised recommendations