Skip to main content

Critical Loads of Heavy Metals for Soils

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

To enable a precautionary risk assessment for future inputs of metals, steady-state methods have been developed to assess critical loads of metals avoiding long-term risks to food quality and eco-toxicological effects on organisms in soils and surface waters. A critical load for metals equals the load resulting at steady state in a concentration in a compartment (e.g. soil solution, plant, fish) that equals the critical limit for that compartment. This chapter presents an overview of methods to assess critical limits and critical loads of metals, with a focus on cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) in soils in relation to impacts on: (i) agriculture (food quality and crop health) and (ii) ecology (plants, invertebrates and soil organisms involved in nutrient cycling processes). Results are presented using generic input data. Furthermore, examples of national and European applications are shown. Results are discussed in view of the uncertainty and applicability of the critical load concept for heavy metals in future agreements on the reduction of metal emissions. It is concluded that for policy applications, dynamic models are also needed to estimate the times involved in attaining a certain chemical state in response to input (deposition, fertilisers or manure) scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M. L., Zhao, F. J., McGrath, S. P., Nicholson, F. A., & Chambers, B. J. (2004). Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environmental Quality, 33, 532–541.

    Article  CAS  Google Scholar 

  2. Allen, H. E. (1993). The significance of trace metal speciation for water, sediment and soil quality standards. Science of the Total Environment, 134, 23–45.

    Article  Google Scholar 

  3. Alloway, B. J. (Ed.). (1990). Heavy metals in soils. Glasgow: Blackie Academic & Professional/Chapman & Hall.

    Google Scholar 

  4. Ashmore, M., Shotbolt, L., Hill, M., Hall, J., Spurgeon, D., Svendsen, C., Fawehinimi, J., Heywood, E., Tipping, E., Lofts, S., Lawlor, A., & Jordan, C. (2004). Further development of an effects (critical loads) based approach for cadmium, copper, lead and zinc. (Final Report, EPG 1/3/188)

    Google Scholar 

  5. Ashmore, M., Van den Berg, L., Terry, A., Tipping, E., Lawlor, A. J., Lofts, S., Thacker, S. A., Vincent, C. D., Hall, J., O’Hanlon, S., Shotbolt, L., Harmens, H., Lloyd, A., Norris, D., Nemitz, E., Jarvis, K., & Jordan, C. (2008). Development of an effects-based approach for toxic metals. Final report ((CEH Project No.: C02779) (Unpublished)). NERC/Centre for Ecology & Hydrology.

    Google Scholar 

  6. Baatrup, E. (1991). Structural and functional-effects of heavy-metals on the nervous-system, including sense-organs, of fish. Comparative Biochemistry and Physiology, 199, 253–257.

    Google Scholar 

  7. Balsberg-Påhlsson, A. M. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47, 287–319.

    Article  Google Scholar 

  8. Bengtsson, G., & Tranvik, L. (1989). Critical metal concentrations for forest soil invertebrates. Water, Air, and Soil Pollution, 47, 381–417.

    Article  CAS  Google Scholar 

  9. Boekhold, A. E., Temminghoff, E. J. M., & van der Zee, S. E. A. T. M. (1993). Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. Journal of Soil Science, 44, 85–96.

    Article  CAS  Google Scholar 

  10. Bonten, L. T. C., Römkens, P. F. A. M., & Brus, D. J. (2008). Contribution of heavy metal leaching from agricultural soils to surface water loads. Environmental Forensics, 9, 252–257.

    Article  CAS  Google Scholar 

  11. Bonten, L. T. C., Groenenberg, J. E., & Römkens, P. F. A. M. (2009). Mogelijkheden voor maatregelen en invloed van voorgenomen beleid m.b.t. nutriënten op de uitspoeling van zware metalen naar het oppervlaktewater (Rapport 1818). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  12. Bringmark, L., Bringmark, E., & Samuelsson, B. (1998). Effects on mor layer respiration by small experimental additions of mercury and lead. Science of the Total Environment, 213, 115–119.

    Article  CAS  Google Scholar 

  13. Brus, D. J., de Gruijter, J. J., Walvoort, D. J. J., de Vries, F., Bronswijk, J. J. B., Römkens, P. F. A. M., & de Vries, W. (2002). Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. Journal of Environmental Quality, 31, 1875–1884.

    Article  CAS  Google Scholar 

  14. Bryan, S. E., Tipping, E., & Hamilton-Taylor, J. (2002). Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comparative Biochemistry and Physiology, 133, 37–49.

    CAS  Google Scholar 

  15. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique on the free-ion activity model. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). New York: Wiley.

    Google Scholar 

  16. Clark, R. B. (1989). Marine pollution. Oxford: Clarendon Press.

    Google Scholar 

  17. Cuypers, A., Remans, T., Weyens, N., Colpaert, J., Vassilev, A., & Vangronsveld, J. (2012). Soil-plant relationships of heavy metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (3rd ed., pp. 161–194). Dordrecht: Springer.

    Google Scholar 

  18. Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29–36.

    Article  CAS  Google Scholar 

  19. De Vries, W., & Bakker, D. J. (1998). Manual for calculating critical loads of heavy metals for terrestrial ecosystems. Guidelines for critical limits, calculation methods and input data (Report 166). Wageningen: DLO Winand Staring Centre.

    Google Scholar 

  20. De Vries, W., & Groenenberg, J. E. (2009). Evaluation of approaches to calculate critical metal loads for forest ecosystems. Environmental Pollution, 157, 3422–3432.

    Article  Google Scholar 

  21. De Vries, W., Bakker, D. J., & Sverdrup, H. U. (1998). Manual for calculating critical loads of heavy metals for aquatic ecosystems. Guidelines for critical limits, calculation methods and input data (Report 165). Wageningen: DLO Winand Staring Centre.

    Google Scholar 

  22. De Vries, W., Römkens, P. F. A. M., & Voogd, J. C. H. (2004). Prediction of the long term accumulation and leaching of zinc in Dutch agricultural soils: A risk assessment study (Rapport 1030). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  23. De Vries, W., Schütze, G., Lofts, S., Tipping, E., Meili, M., Römkens, P. F. A. M., & Groenenberg, J. E. (2005). Calculation of critical loads for cadmium, lead and mercury. Background document to a mapping manual on critical loads of cadmium, lead and mercury (Report 1104). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  24. De Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, B. J., & Schütze, G. (2007). Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects. Reviews of Environmental Contamination and Toxicology, 191, 47–89.

    Article  Google Scholar 

  25. De Vries, W., Römkens, P. F. A. M., & Schütze, G. (2007). Critical soil concentrations of cadmium, lead and mercury in view of health effects on humans and animals. Reviews of Environmental Contamination and Toxicology, 191, 91–130.

    Article  Google Scholar 

  26. De Vries, W., Römkens, P. F. A. M., & Bonten, L. T. C. (2008). Spatially explicit integrated risk assessment of present soil concentrations of cadmium, lead, copper and zinc in the Netherlands. Water, Air, and Soil Pollution, 191, 199–215.

    Article  Google Scholar 

  27. Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 20, 2383–2396.

    Article  Google Scholar 

  28. Doyle, P. J., Gutzman, D. W., Sheppard, M. I., Sheppard, S. C., Bird, G. A., & Hrebenyk, D. (2003). An ecological risk assessment of air emissions of trace metals from copper and zinc production facilities. Human and Ecological Risk Assessment, 9, 607–636.

    Article  CAS  Google Scholar 

  29. Dwane, G. C., & Tipping, E. (1998). Testing a humic speciation model by titration of copper-amended natural waters. Environment International, 24, 609–616.

    Article  CAS  Google Scholar 

  30. Fergusson, J. E. (1990). The heavy elements. Chemistry environmental impact and health effects. Oxford: Pergamon Press.

    Google Scholar 

  31. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  32. Gregor, H. D., Spranger, T., & Hönerbach, F. (Eds.). (1997, November 3–7). Critical limits and effects-based approaches for heavy metals and persistent organic pollutants. United Nations Economic Commission for Europe (UN/ECE), Convention on Long-Range Transboundary Air Pollution (CLRTAP), Task Force on Mapping (TFM). Proceedings of a European workshop on effects-based approaches for heavy metals, Bad Harzburg/Berlin: Federal Environmental Agency (Umweltbundesamt), UBA-Texte 5/98.

    Google Scholar 

  33. Gregor, H-D., Mohaupt-Jahr, B., & Hönerbach, F. (Eds.). (1999, October 12–15). Effects-based approaches for heavy metals. United Nations Economic Commission for Europe (UN/ECE), Convention on Long-Range Transboundary Air Pollution (CLRTAP), Task Force on Mapping (TFM), Schwerin.

    Google Scholar 

  34. Groenenberg, J. E., Römkens, P. F. A. M., & De Vries, W. (2006). Prediction of the long term accumulation and leaching of copper in Dutch agricultural soils: A risk assessment study (Rapport 1278). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  35. Groenenberg, J. E., Römkens, P. F. A. M., Comans, R. N. J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., & de Vries, W. (2009). Transfer functions for solid solution partitioning of cadmium, copper, nickel, lead and zinc: Derivation of relations for free metal ion activities and validation on independent data. European Journal of Soil Science. doi:10.1111/j.1365-2389.2009.01201.x.

  36. Groenenberg, J. E., Koopmans, G. F., & Comans, R. N. J. (2010). Uncertainty analysis of the nonideal competitive adsorption-Donnan model: Effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environmental Science and Technology. doi:10.1021/es902615w.

  37. Groenenberg, B.J. (2011). Evaluation of models for metal partitioning and speciation in soils and their use in risk assessments. PhD thesis Wageningen University, Wageningen, the Netherlands, 218 pp.

    Google Scholar 

  38. Hall, J., Ashmore, M., Fawehinmi, J., Jordan, C., Lofts, S., Shotbolt, L., Spurgeon, S., Svendsen, C., & Tipping, E. (2006). Developing a critical load approach for national risk assessments of atmospheric metal deposition. Environmental Toxicology and Chemistry, 25, 883–890.

    Article  CAS  Google Scholar 

  39. Hodson, M. E. (2012). Effects of heavy metals and metalloids on soil organisms. In B. J. Alloway (Ed.), Heavy metals in soils (3rd ed., pp. 141–160). Dordrecht: Springer.

    Google Scholar 

  40. Ilyin, I., & Dutchak, S. (2005). Deposition modelling for heavy metals. In J. Slootweg, J-P. Hettelingh, M. Posch, S. Dutchak, & I. Ilyin (Eds.), Critical loads of cadmium, lead and mercury in Europe (pp. 39–60). Bilthoven: CCE-MSCE Collaborative Report, Netherlands Environmental Assessment Agency.

    Google Scholar 

  41. Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd and Pb: A method based on free ion concentrations. Environmental Science and Technology, 38, 3623–3631.

    Article  CAS  Google Scholar 

  42. Mance, G. (1987). Pollution threat of heavy metals in aquatic environments. London: Elsevier Applied Science.

    Book  Google Scholar 

  43. Moolenaar, S. W., & Lexmond, T. M. (1998). Heavy metal balances of agro-ecosystems in the Netherlands. Netherlands Journal of Agricultural Science, 46, 171–192.

    CAS  Google Scholar 

  44. Morel, F. M. M. (1983). Principles of aquatic chemistry. New York: Wiley.

    Google Scholar 

  45. Paces, T., Corcimaru, S., Emmanuel, S., Erel, Y., Novak, M., Plyusnin, A., Veron, A., & Wickham, S. (2002). Critical loads of hazardous trace elements in soil-water system. Journal of Field Science, 1, 15–22.

    Google Scholar 

  46. Palmborg, C., Bringmark, L., Bringmark, E., & Nordgren, A. (1998). Multivariate analysis of microbial activity and soil organic matter at a forest site subjected to low-level heavy metal pollution. Ambio, 27, 53–57.

    Google Scholar 

  47. Pampura, T., Groenenberg, J. E., & Rietra, R. P. T. M. (2006). Comparison of methods for copper free ion activity determination in soil solutions of contaminated and background soils. Forest Snow Landscape Research, 80, 305–322.

    Google Scholar 

  48. Pampura, T., Groenenberg, J. E., Lofts, S., & Priputina, I. (2007). Validation of transfer functions predicting Cd and Pb free metal ion activity in soil solution as a function of soil characteristics and reactive metal content. Water, Air, and Soil Pollution, 184, 217–234.

    Article  CAS  Google Scholar 

  49. Posch, M., & de Vries, W. (2009). Dynamic modelling of metals – Time scales and target loads. Environmental Modelling and Software, 24, 86–95.

    Article  Google Scholar 

  50. Posch, M., Hettelingh, J. P., & Slootweg, J. (2003). Manual for dynamic modelling of soil response to atmospheric deposition (RIVM Report 259101 012). Bilthoven: National Institute for Public Health and the Environment.

    Google Scholar 

  51. Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.

    Article  CAS  Google Scholar 

  52. Ritchie, G. S. P., & Sposito, G. (2001). Speciation in soils. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 237–264). Oxford: Blackwell Science.

    Google Scholar 

  53. Römkens, P. F. A. M., Groenenberg, J. E., Bonten, L. T. C., de Vries, W., & Bril, J. (2004). Derivation of partition relationships to calculate Cd, Cu, Ni, Pb and Zn solubility and activity in soil solutions (Rapport 305). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  54. Römkens, P. F. A. M., Groenenberg, J. E., Rietra, R. P. J. J., & De Vries, W. (2008). Onderbouwing LAC2006-waarden en overzicht van bodem-plant relaties ten behoeve van de Risicotoolbox; een overzicht van gebruikte data en toegepaste methoden (Report 1442). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  55. Sauvé, S., Norvell, W. A., McBride, M. B., & Hendershot, W. H. (2000). Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and Technology, 34, 291–296.

    Article  Google Scholar 

  56. Slootweg, J., Hettelingh, J.-P., Posch, M., Schütze, G., Spranger, T., de Vries, W., Reinds, G. J., van t Zelfde, M., Dutchak, S., & Ilyin, I. (2007). European critical loads of cadmium, lead and mercury and their exceedances. Water, Air, and Soil Pollution: Focus, 7, 371–377.

    Article  CAS  Google Scholar 

  57. Smolders, E., Oorts, K., van Sprang, P., Schroeters, I., Janssen, C. R., McGrath, S. P., & McLaughlin, M. J. (2009). Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environmental Toxicology and Chemistry, 28, 1633–1642.

    Article  CAS  Google Scholar 

  58. Sola, F., Isaia, J., & Masoni, A. (1995). Effects of copper on gill structure and transport function in the rainbow trout, Oncorhynchus mykiss. Journal of Applied Toxicology, 15, 391–398.

    Article  CAS  Google Scholar 

  59. Spurgeon, D. J., & Hopkin, S. P. (1996). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia, 40, 80–96.

    CAS  Google Scholar 

  60. Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F.-J., & McGrath, S. P. (2006). A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science and Technology, 40, 7085–7093.

    Article  CAS  Google Scholar 

  61. Tipping, E. (1994). WHAM–A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Computers Geosciences, 20, 973–1023.

    Article  CAS  Google Scholar 

  62. Tipping, E. (1998). Humic ion-binding Model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–47.

    Article  CAS  Google Scholar 

  63. Tipping, E. (2002). Cation binding by humic substances. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  64. Tipping, E. (2005). Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH. Geoderma, 127, 293–304.

    Article  CAS  Google Scholar 

  65. Tipping, E., Woof, C., & Hurley, M. A. (1991). Humic substances in acid surface waters; modelling aluminium binding, contribution to ionic charge-balance, and control of pH. Water Research, 25, 425–435.

    Article  CAS  Google Scholar 

  66. Tipping, E., Rey-Castro, C., Bryan, S. E., & Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, 66, 3211–3224.

    Article  CAS  Google Scholar 

  67. Tipping, E., Lawlor, A. J., & Lofts, S. (2006). Simulating the long-term chemistry of an upland UK catchment: Major solutes and acidification. Environmental Pollution, 141, 151–166.

    Article  CAS  Google Scholar 

  68. Tipping, E., Lawlor, A. J., Lofts, S., & Shotbolt, L. (2006). Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 141, 139–150.

    Article  CAS  Google Scholar 

  69. Tipping, E., Yang, H., Lawlor, A. J., Rose, N. L., & Shotbolt, L. (2007). Trace metals in the catchment, loch and sediments of Lochnagar: Measurements and modelling. In N. L. Rose (Ed.), Lochnagar: The natural history of a mountain lake (pp. 345–373). Dordrecht: Springer.

    Chapter  Google Scholar 

  70. Tyler, G. (1992). Critical concentrations of heavy metals in the mor horizon of Swedish forests (Report 4078). Solna: Swedish Environmental Protection Agency.

    Google Scholar 

  71. UBA. (2004). Mapping manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. www.icpmapping.org

  72. Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  73. Vulkan, R., Zhao, F.-J., Barbosa-Jefferson, V., Preston, S., Paton, G. I., Tipping, E., & McGrath, S. P. (2000). Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environmental Science and Technology, 34, 5115–5121.

    Article  CAS  Google Scholar 

  74. Weng, L. P., Temminghoff, E. J. M., & van Riemsdijk, W. H. (2001). Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique. European Journal of Soil Science, 52, 629–637.

    Article  CAS  Google Scholar 

  75. Wolf, J., Beusen, A. H. W., Groenendijk, P., Kroon, T., Rotter, R., & van Zeijts, H. (2003). The integrated modeling system STONE for calculating nutrient emissions from agriculture in the Netherlands. Environmental Modelling and Software, 18, 597–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Vries, W., Groenenberg, J.E., Lofts, S., Tipping, E., Posch, M. (2013). Critical Loads of Heavy Metals for Soils. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_8

Download citation

Publish with us

Policies and ethics