Skip to main content

Methods for the Determination of Heavy Metals and Metalloids in Soils

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

This chapter explores the analytical methods currently available for the measurement of heavy metal content in soils, ranging from well-established techniques routinely applied in laboratories worldwide, to newly emerging approaches, and with emphasis on the need to select strategies that are ‘fit-for-purpose’ in terms of the information required. Included are guidelines for field sampling and for the storage of samples and avoidance of contamination. Brief information is provided on analytical techniques directly applicable to solid samples including neutron activation analysis, laser-induced breakdown spectrometry and X-ray-based methods. Suitable approaches to sample extraction for different situations are summarised (total digestion, pseudototal digestion, single and sequential extraction) together with examples of procedures involving hot-plate, block, bomb, and microwave apparatus. The use of extractants to assess (plant) bioavailability or (human) bioaccessibility of heavy metals in soils is discussed. Details are provided of the various types of atomic spectrometry that nowadays serve as ‘workhorses’ for trace metal determination in environmental chemistry, with particular emphasis on their principles, strengths, limitations and applicability. Included are flame and electrothermal atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. The chapter also provides a brief introduction to the vast topic of speciation analysis, an area of particular interest for metals that can occur in different oxidation states e.g. Cr, or that have environmentally important organometallic forms e.g. Hg. Finally, some recommendations are given on strategies that researchers should adopt whenever possible to improve the quality of their analytical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Zuhri, A. Z., & Voelter, W. (1998). Applications of adsorptive stripping voltammetry for the trace analysis of metals, pharmaceuticals and biomolecules. Fresenius Journal of Analytical Chemistry, 360, 1–9.

    CAS  Google Scholar 

  2. Ali, I., & Aboul-Enein, H. Y. (2002). Determination of metal ions in water, soil and sediment by capillary electrophoresis. Analytical Letters, 35, 2053–2076.

    CAS  Google Scholar 

  3. Alloway, B. J. (Ed.). (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie Academic & Professional.

    Google Scholar 

  4. Alvarenga, P., Goncalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilisation of a mine soil using perennial ryegrass. Science of the Total Environment, 406, 43–56.

    CAS  Google Scholar 

  5. Alves, S., dos Santos, M. M., & Trancoso, M. A. (2009). Evaluation of measurement uncertainties for the determination of total metal content in soils by atomic absorption spectrometry. Accreditation and Quality Assurance, 14, 87–93.

    CAS  Google Scholar 

  6. Anawar, H. M., Garcia-Sanchez, A., & Regina, I. S. (2008). Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere, 70, 1459–1467.

    CAS  Google Scholar 

  7. Anderson, P., Davidson, C. M., Littlejohn, D., Ure, A. M., Garden, L. M., & Marshall, J. (1998). Comparison of techniques for the analysis of industrial soils by atomic spectrometry. International Journal of Environmental Analytical Chemistry, 71, 19–40.

    CAS  Google Scholar 

  8. Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical and Bioanalytical Chemistry, 388, 947–956.

    CAS  Google Scholar 

  9. Arroya, L., Trejos, T., Gardinali, P. R., & Almirall, J. R. (2009). Optimisation and validation of a laser ablation inductively coupled plasma mass spectrometry methods for the routine analysis of soils and sediments. Spectrochimica Acta B, 64, 16–25.

    Google Scholar 

  10. Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.

    CAS  Google Scholar 

  11. Baker, S. A., Bi, M., Aucelio, R. Q., Smith, B. W., & Winefordner, J. D. (1999). Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 14, 19–26.

    CAS  Google Scholar 

  12. Barona, A., Romero, F., & Elejalde, C. (1995). Soil-metal interactions: Associations of macroconstituent fractions in selected soils. Journal of Hazardous Materials, 42, 289–301.

    CAS  Google Scholar 

  13. Basar, H. (2009). Methods for estimating phytoavailable metals in soils. Communications in Soil Science and Plant Analysis, 40, 1087–1105.

    CAS  Google Scholar 

  14. Berrow, M. L. (1988). Sampling of soils and plants for trace element analysis. Analytical Proceedings, 25, 116–118.

    CAS  Google Scholar 

  15. Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometric analysis. Analytica Chimica Acta, 424, 289–296.

    CAS  Google Scholar 

  16. Bi, M., Ruiz, A. M., Smith, B. W., & Winefordner, J. D. (2000). Study of solution calibration of NIST soil and glass samples by laser ablation inductively coupled plasma mass spectrometry. Applied Spectroscopy, 54, 639–644.

    CAS  Google Scholar 

  17. Boruvka, L., Kristoufkova, S., Kozak, J., & Huan Wei, A. (1997). Speciation of cadmium, lead and zinc in heavily polluted soil. Rostlinna Vyroba, 43, 187–192.

    CAS  Google Scholar 

  18. Bose, S., & Bhattacharyya, A. K. (2008). Heavy metal accumulation in wheat plants grown in soil amended with industrial sludge. Chemosphere, 70, 1264–1272.

    CAS  Google Scholar 

  19. Bosso, S. T., Enzweiler, J., & Angelica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilisation with phosphate. Water, Air, and Soil Pollution, 195, 257–273.

    CAS  Google Scholar 

  20. Brenner, I. B., & Zander, A. T. (2000). Axially and radially viewed inductively coupled plasmas – A critical review. Spectrochimica Acta B, 55, 1195–1240.

    Google Scholar 

  21. Bujdos, M., Kubova, J., & Stresko, V. (2000). Problems of selenium fractionation in soils rich in organic matter. Analytica Chimica Acta, 408, 103–109.

    CAS  Google Scholar 

  22. Burt, R., Wilson, M. A., Mays, M. D., Keck, T. J., Fillmore, M., Rodman, A. W., Alexander, E. B., & Hernandez, L. (2000). Trace and major elemental analysis applications in the US cooperative soil survey program. Communications in Soil Science and Plant Analysis, 31, 1757–1771.

    CAS  Google Scholar 

  23. Butler, O. T., Cook, J. M., Davidson, C. M., Harrington, C. F., & Miles, D. L. (2009). Atomic spectrometry update: Environmental analysis. Journal of Analytical Atomic Spectrometry, 24, 131–177.

    CAS  Google Scholar 

  24. Butler, O. T., Cairns, W. R. L., Cook, J. M., & Davidson, C. M. (2012). Atomic spectrometry update: Environmental analysis. Journal of Analytical Atomic Spectrometry, 27(2), 187–221.

    CAS  Google Scholar 

  25. Button, M., Watts, M. J., Cave, M. R., Harrington, C. F., & Jenkin, G. T. (2009). Earthworms and in vitro physiologically based extraction tests: Complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environmental Geochemistry and Health, 31, 273–282.

    CAS  Google Scholar 

  26. Cal-Prieto, M. J., Felipe-Sotelo, M., Carlosena, A., Andrade, J. M., Lopez-Mahia, P., Muniategui, S., & Prada, D. (2002). Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990–2000. Talanta, 56, 1–51.

    CAS  Google Scholar 

  27. Capitelli, F., Colao, F., Provenzano, M. R., Fantoni, R., Brunetti, G., & Senesi, N. (2002). Determination of heavy metals in soils by laser-induced breakdown spectroscopy. Geoderma, 106, 45–62.

    CAS  Google Scholar 

  28. Carr, R., Zhang, C. S., Moles, N., & Harder, M. (2008). Identification and mapping of heavy metal pollution in soils from a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 30, 45–52.

    CAS  Google Scholar 

  29. Cattani, I., Fragoulis, G., Boccelli, R., & Capri, E. (2006). Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere, 64, 1972–1979.

    CAS  Google Scholar 

  30. Cattani, I., Spalla, S., Beone, G. M., Del Re, A. A. M., Boccelli, R., & Trevisan, M. (2008). Characterisation of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films. Talanta, 74, 1520–1526.

    CAS  Google Scholar 

  31. Chen, B. L., & Beckett, R. (2001). Development of SdFFF-ETAAS for characterising soil and sediment colloids. Analyst, 126, 1588–1593.

    CAS  Google Scholar 

  32. Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.

    CAS  Google Scholar 

  33. Christian, G. (1994). Analytical chemistry. New York: Wiley.

    Google Scholar 

  34. Cunat, J., Fortes, F. J., & Laserna, J. J. (2009). Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyser. Analytica Chimica Acta, 633, 38–42.

    CAS  Google Scholar 

  35. D’Amore, J. J., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils: A review. Journal of Environmental Quality, 34, 1707–1745.

    Google Scholar 

  36. D’Angelo, J., Strasser, E., Marchevsky, E., & Perino, E. (2002). An improved method for obtaining small pressed powder pellets for the analysis by XRF. Chemia Analityczna, 47, 913–924.

    Google Scholar 

  37. Das, A. K., & Chakraborty, R. (1997). Electrothermal atomic absorption spectrometry in the study of metal ion speciation. Fresenius Journal of Analytical Chemistry, 357, 1–17.

    CAS  Google Scholar 

  38. Davidson, C. M., Hursthouse, A. S., Tognarelli, D. M., Ure, A. M., & Urquhart, G. J. (2004). Should ammonium oxalate replace hydroxylammonium chloride in step 2 of the BCR sequential extraction protocol for soil ands sediment? Analytica Chimica Acta, 508, 193–199.

    CAS  Google Scholar 

  39. Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A. D., Diaz-Barrientos, E., Grcman, H., Hossack, I., Hursthouse, A. S., Madrid, L., Rodrigues, S., & Zupan, M. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.

    CAS  Google Scholar 

  40. Davidson, C. M., Nordon, A., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A. C., Diaz-Barrientos, E., Grcman, H., Hodnik, A., Hossack, I., Hursthouse, A. S., Ljung, K., Madrid, F., Ottabong, E., & Rodrigues, S. (2007). Quality and comparability of measurement of potentially toxic elements in urban soils by a group of European laboratories. International Journal of Environmental Analytical Chemistry, 87, 589–601.

    CAS  Google Scholar 

  41. de Abreu, C. A., Van Raij, B., de Abreu, M. F., & Gonzalez, A. P. (2005). Routine soil testing to monitor heavy metals and boron. Scientia Agricola, 62, 564–571.

    Google Scholar 

  42. de Almeida-Bezerra, M., Arruda, M. A. Z., & Ferreira, S. L. C. (2005). Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review. Applied Spectroscopy Reviews, 40, 269–299.

    Google Scholar 

  43. de Gregori, I., Pinochet, H., Fuentes, E., & Potin-Gautier, M. (2001). Determination of antimony in soils and vegetables by hydride generation atomic fluorescence spectrometry and electrothermal atomic absorption spectrometry – Optimisation and characterisation of both analytical techniques. Journal of Analytical Atomic Spectrometry, 16, 172–178.

    Google Scholar 

  44. de Marco, R., Clarke, G., & Pejcic, B. (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19, 1987–2001.

    Google Scholar 

  45. Dean, J. R. (1997). Atomic absorption plasma spectrometry. Chichester: Wiley.

    Google Scholar 

  46. Del Castilho, P., & Rix, I. (1993). Ammonium acetate extraction for soil heavy metal speciation – Model aided soil test interpretation. International Journal of Environmental Analytical Chemistry, 51, 59–64.

    Google Scholar 

  47. Doelsch, E., Moussard, G., & Saint Macary, H. (2008). Fractionation of tropical soilborne heavy metals – Comparison of two sequential extraction procedures. Geoderma, 143, 168–179.

    CAS  Google Scholar 

  48. Dong, L. M., & Yan, X. P. (2005). On-line coupling of flow injection sequential extraction to hydride generation atomic fluorescence spectrometry for fractionation of arsenic in soils. Talanta, 65, 627–631.

    CAS  Google Scholar 

  49. dos Santos, J. S., dos Santos, M. L. P., Conti, M. M., dos Santos, S. N., & de Oliveira, E. (2009). Evaluation of some metals in Brazilian coffees cultivated during the process of conversion from conventional to organic agriculture. Food Chemistry, 115, 1405–1410.

    Google Scholar 

  50. Dubiella-Jackowska, A., Wasik, A., Przyjazny, A., & Namiesnik, J. (2007). Preparation of soil and sediment samples for determination of organometallic compounds. Polish Journal of Environmental Studies, 16, 159–176.

    CAS  Google Scholar 

  51. Duester, L., Diaz-Bone, R. A., Kosters, J., & Hirner, A. V. (2005). Methylated arsenic, antimony and tin species in soils. Journal of Environmental Monitoring, 7, 1186–1193.

    CAS  Google Scholar 

  52. Ebdon, L., Foulkes, M., & Sutton, K. (1997). Slurry nebulisation in plasmas. Journal of Analytical Atomic Spectrometry, 12, 213–229.

    CAS  Google Scholar 

  53. Erhart, E., Hartl, W., & Putz, B. (2008). Total soil heavy metal concentrations and mobile fractions after 10 years of biowaste-compost fertilisation. Z Planz Bodenkunde, 171, 378–383.

    CAS  Google Scholar 

  54. Essington, M. E., Melnichenko, G. V., Stewart, M. A., & Hull, R. A. (2009). Soil metal analysis using laser-induced breakdown spectroscopy (LIBS). Soil Science Society of America Journal, 73, 1469–1478.

    CAS  Google Scholar 

  55. Ezer, M. (2009). Heavy metal content of roadside soils in Kahramanmaras, Turkey. Fresenius Environmental Bulletin, 18, 704–708.

    CAS  Google Scholar 

  56. Farghaly, O. M., & Ghandour, M. A. (2005). Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environmental Research, 97, 229–235.

    CAS  Google Scholar 

  57. Feldmann, J., Salaun, P., & Lombi, E. (2009). Critical review perspective: Elemental speciation analysis methods in environmental chemistry – Moving towards methodological integration. Environmental Chemistry, 6, 275–289.

    CAS  Google Scholar 

  58. Felt, D. R., Bednar, A. J., & Georgian, T. (2008). The effects of grinding methods on metals concentrations in soil. Talanta, 77, 380–387.

    CAS  Google Scholar 

  59. Feng, M. H., Shan, Z. Q., Zhang, S. Z., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2 and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231–240.

    CAS  Google Scholar 

  60. Ferreira, E. C., Anzano, J. M., Milori, D. M. P. B., Ferreira, E. J., Lasheras, R. J., Bonilla, B., Montull-Ibor, B., Casas, J., & Neto, L. M. (2009). Multiple response optimisation of laser-induced breakdown spectroscopy parameters for multi-element analysis of soil samples. Applied Spectroscopy, 63, 1081–1088.

    CAS  Google Scholar 

  61. Fifield, F. W., & Haines, P. J. (Eds.). (1995). Environmental analytical chemistry. London: Blackie Academic and Professional.

    Google Scholar 

  62. Figueiredo, E., Soares, M. E., Baptista, P., Castro, M., & Bastos, M. L. (2007). Validation of an electrothermal atomisation atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils. Journal of Agricultural and Food Chemistry, 55, 7192–7198.

    CAS  Google Scholar 

  63. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.

    CAS  Google Scholar 

  64. Fraser, L. M., & Winefordner, J. D. (1971). Laser-excited atomic fluorescence flame spectrometry. Analytical Chemistry, 43, 1693–1696.

    CAS  Google Scholar 

  65. Fukushi, K., Takeda, S., Chayama, K., & Wakida, S. (1999). Application of capillary electrophoresis to the analysis of inorganic ions in environmental samples. Journal of Chromatography, 834, 349–362.

    CAS  Google Scholar 

  66. Geng, W., Nakajima, T., Takanashi, H., & Ohki, A. (2008). Determination of mercury in ash and soil samples by oxygen flask combustion method-cold vapour atomic fluorescence spectrometry (CVAFS). Journal of Hazardous Materials, 154, 325–330.

    CAS  Google Scholar 

  67. Golia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural sols of central Greece using the modified BCR sequential extraction method. International Journal of Environmental Analytical Chemistry, 87, 1053–1063.

    CAS  Google Scholar 

  68. Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3 solution – Evaluation of DIN 19730. Journal of Soils and Sediments, 5, 101–106.

    CAS  Google Scholar 

  69. Gustavsson, B., Luthbom, K., & Lagerkvist, A. (2006). Comparison of analytical error and sampling error for contaminated soil. Journal of Hazardous Materials, 138, 252–260.

    CAS  Google Scholar 

  70. Haase, O., Klare, M., Krengel-Rothensee, K., & Broekaert, J. A. C. (1998). Evaluation of the determination of mercury at the trace and ultra-trace levels in the presence of high concentrations of NaCl by flow injection cold vapour atomic absorption spectrometry using SnCl2 and NaBH4 as reductands. Analyst, 123, 1219–1222.

    CAS  Google Scholar 

  71. Hanc, A., Tlustos, P., Szakova, J., & Habart, J. (2009). Changes in cadmium mobility during composting and after soil application. Waste Management, 29, 2282–2288.

    CAS  Google Scholar 

  72. Hanrahan, G., Patil, D. G., & Wang, J. (2004). Electrochemical sensors for environmental monitoring: Design, development and applications. Journal of Environmental Monitoring, 6, 657–664.

    CAS  Google Scholar 

  73. Harmon, R. S., De Lucia, F. C., Miziolek, A. W., McNesby, K. L., Walters, R. A., & French, P. D. (2005). Laser-induced breakdown spectroscopy (LIBS) – An emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis. Geochemistry: Exploration, Environment, Analysis, 5, 21–28.

    CAS  Google Scholar 

  74. Harrington, C. F., Clough, R., Hansen, H. R., Hill, S. J., Pergantis, S. A., & Tyson, J. F. (2009). Atomic spectrometry update: Elemental speciation. Journal of Analytical Atomic Spectrometry, 24, 999–1025.

    CAS  Google Scholar 

  75. Harris, D. C. (2003). Quantitative chemical analysis. New York: W.H. Freeman and Company.

    Google Scholar 

  76. Hashimoto, Y., Takaoka, M., Oshita, K., & Tanida, H. (2009). Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilisation investigated by X-ray absorption fine structure (XAFS) spectroscopy. Chemosphere, 76, 616–622.

    CAS  Google Scholar 

  77. Hassan, N. M., Rasmussen, P. E., Dabek-Zlotorzynska, E., Celo, V., & Chen, H. (2007). Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: Maximising element recoveries. Water, Air, & Soil Pollution, 178, 323–334.

    CAS  Google Scholar 

  78. Hayyis-Hellal, J., Vallaeys, T., Garnier-Zarli, E., & Bousserrhine, N. (2009). Effects of mercury on soil microbial communities in tropical soils of French Guyana. Applied Soil Ecology, 41, 59–68.

    Google Scholar 

  79. He, M., Hu, B., & Jiang, Z. C. (2005). Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluoroethylene emulsion as a chemical modifier. Analytica Chimica Acta, 530, 105–112.

    CAS  Google Scholar 

  80. Herrera, K. K., Tognoni, E., Omenetto, N., Smith, B. W., & Winefordner, J. D. (2009). Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser induced breakdown spectroscopy: Recent results and considerations. Journal of Analytical Atomic Spectrometry, 24, 413–425.

    CAS  Google Scholar 

  81. Hill, S. J., Bloxham, M. J., & Worsfold, P. J. (1993). Chromatography coupled with inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry – A review. Journal of Analytical Atomic Spectrometry, 8, 499–515.

    CAS  Google Scholar 

  82. Hoenig, M. (2001). Preparation steps in environmental trace element analysis – Facts and traps. Talanta, 54, 1021–1038.

    CAS  Google Scholar 

  83. Holler, F. J., Skoog, D. A., & Crouch, S. R. (2007). Principles of instrumental analysis. Belmont: Thomson.

    Google Scholar 

  84. Hutchinson, S. M., & Armitage, R. P. (2009). A peat profile record of recent environmental events in the South Pennines (UK). Water, Air, and Soil Pollution, 199, 247–259.

    CAS  Google Scholar 

  85. Intawongse, M., & Dean, J. R. (2006). In vitro testing for assessing the oral bioaccessibility of trace elements in soils and food samples. Trends in Analytical Chemistry, 25, 876–886.

    CAS  Google Scholar 

  86. Jackson, M. L. (1958). Soil chemical analysis. New Jersey: Prentice-Hall.

    Google Scholar 

  87. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Memon, A. R., Jalbani, N., & Shah, A. (2008). Use of sewage sludge after liming as fertiliser for maize growth. Pedosphere, 18, 203–213.

    CAS  Google Scholar 

  88. Jiminez, M. S., Gomez, M. T., & Castillo, J. R. (2007). Multi-element analysis of compost by laser ablation inductively coupled plasma mass spectrometry. Talanta, 72, 1141–1148.

    Google Scholar 

  89. Jing, Y. D., He, Z. L., Yang, X. E., & Sun, C. Y. (2008). Evaluation of soil tests for plant-available mercury in a soil-crop rotation system. Communications in Soil Science and Plant Analysis, 39, 3032–3046.

    CAS  Google Scholar 

  90. Johnston, S. G., Burton, E. D., Keene, A. F., Bush, R. T., Sullivan, L. A., & Isaacson, L. (2009). Pore water sampling in acid sulfate soils: A new peeper method. Journal of Environmental Quality, 38, 2474–2477.

    CAS  Google Scholar 

  91. Jolliff, B. L., Rockow, K. M., Korotev, R. L., & Haskin, L. A. (1996). Lithologic distribution and geologic history of the Apollo 17 site: The record in soils and small rock particles from the highland massifs. Meteoritics And Planetary Science, 31, 116–145.

    CAS  Google Scholar 

  92. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122.

    CAS  Google Scholar 

  93. Kappen, P., Welter, E., Beck, P. H., McNamara, J. M., Moroney, K. A., Roe, G. M., Read, A., & Pigram, P. J. (2008). Time-resolved XANES speciation studies of chromium in soils during simulated contamination. Talanta, 75, 1284–1292.

    CAS  Google Scholar 

  94. Kartal, S., Aydin, Z., & Tokalioglu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedures and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132, 80–89.

    CAS  Google Scholar 

  95. Ke, Y. P., Sun, Q., Yang, Z. R., Xin, J. J., Chen, L., & Hou, X. D. (2006). Determination of trace Cd and Zn in corn kernels and related soil samples by atomic absorption and chemical vapour generation atomic fluorescence after microwave-assisted digestion. Spectroscopy Letters, 39, 29–43.

    CAS  Google Scholar 

  96. Kebbekus, B. B., & Mitra, S. (1998). Environmental chemical analysis. London: Blackie Academic and Professional.

    Google Scholar 

  97. Kelepertsis, A., Argyraki, A., & Alexakis, D. (2006). Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochemistry: Exploration, Environment, Analysis, 6, 349–355.

    CAS  Google Scholar 

  98. Kellner, R., Mermet, J.-M., Otto, M., & Widmer, H. M. (1998). Analytical chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  99. Khan, M. J., & Jones, D. L. (2008). Chemical and organic immobilisation treatments for reducing phytoavailability of heavy metals in copper-mine tailings. Z Pflanzen Bodenkunde, 171, 908–916.

    CAS  Google Scholar 

  100. Kim, K. R., Owens, G., & Naidu, R. (2009). Heavy metal distribution, bioavailability, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian Journal of Soil Research, 47, 166–176.

    CAS  Google Scholar 

  101. Krachler, M. (2007). Environmental applications of single collector high resolution ICP-MS. J ournal of Environmental Monitoring, 9, 790–804.

    CAS  Google Scholar 

  102. Krishna, A. K., & Govil, P. K. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology, 54, 1465–1472.

    CAS  Google Scholar 

  103. Krishna, A. K., Mohan, K. R., & Murthy, N. N. (2009). Determination of heavy metals in soil, sediments and rock by inductively coupled plasma optical emission spectrometry: Microwave-assisted digestion versus open acid digestion technique. Atomic Spectroscopy, 30, 75–81.

    CAS  Google Scholar 

  104. Kurfurst, U., Desaules, A., Rehnert, A., & Muntau, H. (2004). Estimation of measurement uncertainty by the budget approach for heavy metal content in soils under different land use. Accreditation and Quality Assurance, 9, 64–75.

    Google Scholar 

  105. Laborda, F., Ruiz-Bergueria, S., Bolea, E., & Castillo, J. R. (2009). Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis. Spectrochimica Acta B, 64, 392–398.

    Google Scholar 

  106. Lajunen, L. J. H. (1992). Spectrochemical analysis by atomic absorption and emission. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  107. Lee, Y. L., Chang, C. C., & Jiang, S. J. (2003). Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil. Spectrochimica Acta B, 58, 523–530.

    Google Scholar 

  108. Lee, W. B., Wu, J. Y., Lee, Y. I., & Sneddon, J. (2004). Recent applications of laser-induced breakdown spectrometry: A review of material approaches. Applied Spectroscopy Reviews, 39, 27–97.

    CAS  Google Scholar 

  109. Liao, G. L. (2008). Assessment of soil heavy metal pollution in different mining zones of a nonferrous metal mine. Archives of Environmental Protection, 34, 93–100.

    CAS  Google Scholar 

  110. Lim, T. T., & Goh, K. H. (2005). Selenium extractability from a contaminated fine soil fraction: Implication on soil cleanup. Chemosphere, 58, 91–101.

    CAS  Google Scholar 

  111. Lindsay, W. L., & Norwell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 12, 421–428.

    Google Scholar 

  112. Lombi, E., & Susini, J. (2009). Synchrotron-based techniques for plant and soil science: Opportunities, challenges and future perspectives. Plant and Soil, 320, 1–35.

    CAS  Google Scholar 

  113. Lopez, M., Gonzales, I., & Romero, A. (2008). Trace elements contamination of agricultural soils affected by sulfide exploitation (Iberian Pyrite Belt, SW Spain). Environmental Geology, 54, 805–818.

    CAS  Google Scholar 

  114. Lorenz, S. E., Harmon, R. E., & McGrath, S. P. (1994). Differences between soil solutions obtained from rhizosphere and non-rhizophere soils by water displacement and soil centrifugation. European Journal of Soil Science, 45, 431–438.

    CAS  Google Scholar 

  115. Ma, Y. B., Lombi, E., Nolan, A. L., & McLaughlin, M. J. (2006). Determination of labile Cu in soils and isotopic exchangeability of colloidal Cu complexes. European Journal of Soil Science, 57, 147–153.

    CAS  Google Scholar 

  116. Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    CAS  Google Scholar 

  117. Madrid, F., Florido, M. C., & Madrid, L. (2009). Trace metal availability in soils amended with metal-fixing organic materials. Water, Air, and Soil Pollution, 200, 15–24.

    CAS  Google Scholar 

  118. Makinen, E., Korhonen, M., Viskari, E. L., Haapamaki, S., Jarvinen, M., & Lu, L. (2006). Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171, 95–110.

    Google Scholar 

  119. Malandrino, M., Abollino, O., Buoso, S., Casalino, C. E., Gasparon, M., Giacomino, A., La Gioia, C., & Mentasti, E. (2009). Geochemical characterisation of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchemical Journal, 92, 21–31.

    CAS  Google Scholar 

  120. Maleki, N., Safavi, A., & Ramezani, Z. (1999). Determination of lead by hydride generation atomic absorption spectrometry (HGAAS) using a solid medium for generating hydride. Journal of Analytical Atomic Spectrometry, 14, 1227–1230.

    CAS  Google Scholar 

  121. Manno, E., Varrica, D., & Dongarra, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant in Gela, Sicily. Atmospheric Environment, 40, 5929–5941.

    CAS  Google Scholar 

  122. Marin, B., Chopin, E. I. B., Jupinet, B., & Gauthier, D. (2008). Comparison of microwave-assisted digestion procedures for total trace element determination in calcareous soils. Talanta, 77, 282–288.

    CAS  Google Scholar 

  123. Markus, J., & McBratney, A. B. (2001). A review of the contamination of soil with lead II: Spatial distribution and risk assessment of soil lead. Environment International, 27, 399–411.

    CAS  Google Scholar 

  124. Marques, A. P. G. C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. Journal of Hazardous Materials, 165, 174–179.

    CAS  Google Scholar 

  125. Matusiewicz, H. (2003). Chemical vapour generation with slurry sampling: A review of atomic absorption applications. Applied Spectroscopy Reviews, 38, 263–294.

    CAS  Google Scholar 

  126. Mayes, D. E., & Hussam, A. (2009). Voltammetric methods for determination and speciation of inorganic arsenic in the environment: A review. Analytica Chimica Acta, 646, 6–16.

    Google Scholar 

  127. McBride, M. B., Pitiranggon, M., & Kim, B. (2009). A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Science, 174, 439–444.

    CAS  Google Scholar 

  128. Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    CAS  Google Scholar 

  129. Mico, C., Peris, M., Sanchez, J., & Recatala, L. (2008). Trace element analysis via open-vessel or microwave-assisted digestion in calcareous Mediterranean soils. Communications in Soil Science and Plant Analysis, 39, 890–904.

    CAS  Google Scholar 

  130. Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemists. Harlow: Pearson Education.

    Google Scholar 

  131. Molina, M., Aburto, F., Calderon, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment Contamination, 18, 497–511.

    CAS  Google Scholar 

  132. Monterroso, C., Alvares, E., & Fernandez-Marcos, M. L. (1999). Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degradation Development, 10, 35–47.

    Google Scholar 

  133. Moral, R., Gilkes, R. J., & Moreno-Caselles, J. (2002). A comparison of extractants for heavy metals in contaminated soils in Spain. Communications in Soil Science and Plant Analysis, 33, 2781–2791.

    CAS  Google Scholar 

  134. Morman, S. A., Plumlee, G. S., & Smith, D. B. (2009). Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Applied Geochemistry, 24, 1454–1463.

    CAS  Google Scholar 

  135. Morrison, J. M., Goldhaber, M. B., Lee, L., Holloway, J. M., Wanty, R. B., Wolf, R. E., & Ranville, J. F. (2009). A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24, 1500–1511.

    CAS  Google Scholar 

  136. Mosselmans, J. F. W., Quinn, P. D., Rosell, J. R., Atkinson, K. D., Dent, A. J., Cavill, S. I., Hodson, M. E., Kirk, C. A., & Schofield, P. F. (2008). The first environmental science experiments on the new microfocus spectroscopy beamline at Diamond. Mineralogical Magazine, 72, 197–200.

    CAS  Google Scholar 

  137. Mossop, K. F., Davidson, C. M., Ure, A. M., Shand, C. S., & Hillier, S. J. (2009). Effect of EDTA on the fractionation and uptake by Taraxacum officinale of potentially toxic elements in soil from former chemical manufacturing sites. Plant and Soil, 320, 117–139.

    CAS  Google Scholar 

  138. Muntau, H. (2001). Recent developments in the field of environmental reference materials at the JRC Ispra. Fresenius Journal of Analytical Chemistry, 370, 134–141.

    CAS  Google Scholar 

  139. Nael, M., Khademi, H., Jalalain, A., Schulin, R., Kalbasi, M., & Sotohian, F. (2009). Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of Western Alborz, Iran. Geoderma, 152, 157–170.

    CAS  Google Scholar 

  140. Naftel, S. J., Martin, R. R., Macfie, S. M., Courchesne, F., & Seguin, V. (2007). An investigation of metals at the soil/root interface using synchrotron radiation analysis. Canadian Journal of Analytical Sciences and Spectroscopy, 52, 18–24.

    CAS  Google Scholar 

  141. Nakayama, K., Shibata, Y., & Nakamura, T. (2007). Glass beads/x-ray fluorescence analyses of 42 components in felsic rocks. X-ray Spectrometry, 36, 130–140.

    CAS  Google Scholar 

  142. Nunes, K. P., Munita, C. S., Vasconcellos, M. B. A., Oliveira, P. M. S., Croci, C. A., & Faleiros, F. M. (2009). Characterisation of soil samples according to their metal content. Journal of Radioanalytical and Nuclear Chemistry, 281, 359–363.

    CAS  Google Scholar 

  143. Ogiyama, S., Sakamoto, K., Suzuki, H., Ushio, S., Anzai, T., & Inubushi, K. (2006). Measurement of trace metals in arable soils with animal manure application using INAA and the concentrated acid digestion method. Soil Science and Plant Nutrition, 52, 114–121.

    CAS  Google Scholar 

  144. Oliva, S. R., & Espinosa, A. J. F. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Michrochemical Journal, 86, 131–139.

    Google Scholar 

  145. Oliver, I. W., Graham, M. C., MacKenzie, A. B., Ellam, R. M., & Farmer, J. G. (2008). Distribution and partitioning of depleted uranium (DU) in soils at weapons test ranges – Investigations combining the BCR extraction scheme and isotopic analysis. Chemosphere, 72, 932–939.

    CAS  Google Scholar 

  146. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Weile, T., Wragg, J., Rompelberg, C. J. M., Sips, A. J. A. M., & Van Wijnen, J. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36, 3326–3334.

    CAS  Google Scholar 

  147. Palumbo-Roe, B., Cave, M. R., Klinck, B. A., Wragg, J., Taylor, H., O’Donnell, K. E., & Shaw, R. A. (2005). Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England. Environmental Geochemistry and Health, 27, 121–130.

    CAS  Google Scholar 

  148. Papassiopi, N., Kontoyianni, A., Vanuanidou, K., & Xenidis, A. (2009). Assessment of chromium biostabilisation in contaminated soils using standard leaching and sequential extraction techniques. Science of the Total Environment, 407, 925–936.

    CAS  Google Scholar 

  149. Parat, C., Leveque, J., Dousset, S., Chaussod, R., & Andreux, F. (2003). Comparison of three sequential extraction procedures used to study trace element distribution in an acidic sandy soil. Analytical and Bioanalytical Chemistry, 376, 243–247.

    CAS  Google Scholar 

  150. Peijnenburg, W. J. G. M., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environmental within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.

    CAS  Google Scholar 

  151. Peltola, P., & Astrom, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25, 397–419.

    CAS  Google Scholar 

  152. Pereira, E., Rodriguez, S. M., Otero, M., Valega, M., Lopes, C. B., Pato, P., Coelho, J. P., Lillebo, A. I., Pardal, M. A., Rocha, R., & Duarte, A. C. (2008). Evaluation of an interlaboratory proficiency testing exercise for total mercury in environmental samples of soil, sediment and fish tissue. Trends in Analytical Chemistry, 27, 959–970.

    CAS  Google Scholar 

  153. Perez, A. L., & Anderson, K. A. (2009). DGT estimates cadmium accumulation in wheat and potato from phosphate fertiliser applications. Science of the Total Environment, 407, 5096–5103.

    CAS  Google Scholar 

  154. Petit, M. D., & Rucandio, M. I. (1999). Sequential extractions for determination of cadmium distribution in coal fly ash, soil and sediment samples. Analytica Chimica Acta, 401, 283–291.

    CAS  Google Scholar 

  155. Petrov, P. K., Serafimovska, J. M., Arpadjan, S., Tsalev, D. L., & Stafilov, T. (2008). Influence of EDTA, carboxylic acids, amino- and hydroxocarboxylic acids and monosaccharides on the generation of arsines in hydride generation atomic absorption spectrometry. Central European Journal of Chemistry, 6, 216–221.

    CAS  Google Scholar 

  156. Pokrovsky, O. S., Schott, J., & Dupre, B. (2006). Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochimica et Cosmochimica Acta, 70, 3239–3260.

    CAS  Google Scholar 

  157. Prohaska, I., Wenzel, W. W., & Stingeder, G. (2005). ICP-MS based tracing of metal sources and mobility in a soil depth profile via the isotopic variation of Sr and Pb. International Journal of Mass Spectrometry, 242, 243–250.

    CAS  Google Scholar 

  158. Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152, 330–341.

    CAS  Google Scholar 

  159. Quenea, K., Larny, I., Winterton, P., Bermond, A., & Dumat, C. (2009). Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma, 149, 217–223.

    CAS  Google Scholar 

  160. Quevauviller, P. (1996). Certified reference materials for the quality control of total and extractable trace element determinations in soils and sludges. Communications in Soil Science and Plant Analysis, 27, 403–418.

    CAS  Google Scholar 

  161. Quevauviller, P., Lachica, M., Barahona, E., Gomez, A., Rauret, G., Ure, A., & Muntau, H. (1998). Certified reference material for the quality control of EDTA- and DTPA-extractable metal contents in calcareous soil (CRM 600). Fresenius Journal of Analytical Chemistry, 360, 505–511.

    CAS  Google Scholar 

  162. Radu, T., & Diamond, D. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171, 1168–1171.

    CAS  Google Scholar 

  163. Ramsey, M. H. (1997). Measurement uncertainty arising from sampling: Implications for the objectives of geoanalysis. Analyst, 122, 1255–1260.

    CAS  Google Scholar 

  164. Rao, D. V. K. N. (2005). Evaluation of soil extractants in terms of growth. Communications in Soil Science and Plant Analysis, 36, 1513–1523.

    Google Scholar 

  165. Rao, C. R. M., Sahuquillo, A., & Lopez-Sanchez, J. F. (2008). A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291–333.

    CAS  Google Scholar 

  166. Raposo, J. L., de Oliveira, S. R., Caldas, N. M., & Neto, J. A. G. (2008). Evaluation of alternative lines of Fe for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry. Analytica Chimica Acta, 627, 198–202.

    CAS  Google Scholar 

  167. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    CAS  Google Scholar 

  168. Razic, S. S., Dogo, S. M., & Slavkovic, L. J. (2006). Multivariate characterisation of herbal drugs and rhizosphere soil samples according to their metallic content. Microchemical Journal, 84, 93–101.

    CAS  Google Scholar 

  169. Reeve, R. N. (1994). Environmental analysis. Chichester: Wiley.

    Google Scholar 

  170. Resano, M., Vanhaecke, F., & de Loos-Vollebregt, M. T. C. (2008). Electrothermal vaporisation for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry – A critical review with focus on solid sampling and slurry analysis. Journal of Analytical Atomic Spectrometry, 23, 1450–1475.

    CAS  Google Scholar 

  171. Roberts, S. M. (2004). Incorporating information on bioavailability of soil-borne chemicals into human health risk assessments. Human and Ecological Risk Assessment, 10, 6331–6635.

    Google Scholar 

  172. Rousseau, R. M. (2006). Corrections for matrix effects in X-ray fluorescence analysis – A tutorial. Spectrochimica Acta B, 61, 759–777.

    Google Scholar 

  173. Rubio, R., & Ure, A. M. (1993). Approaches to sampling and sample pre-treatments for metal speciation in soils and sediments. International Journal of Environmental Analytical Chemistry, 51, 205–217.

    CAS  Google Scholar 

  174. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430.

    CAS  Google Scholar 

  175. Ruiz-Chancho, M. J., Lopez-Sanchez, J. F., & Rubio, R. (2007). Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Analytical and Bioanalytical Chemistry, 387, 627–635.

    CAS  Google Scholar 

  176. Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., & Ure, A. M. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.

    CAS  Google Scholar 

  177. Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22, 152–159.

    CAS  Google Scholar 

  178. Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (2002). Trace element estimation in soils: An appraisal of ED-XRF techniques using group analysis scheme. Journal of Trace and Microprobe Techniques, 20, 539–551.

    CAS  Google Scholar 

  179. Sandroni, V., Smith, C. M. M., & Donovan, A. (2003). Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta, 60, 715–723.

    CAS  Google Scholar 

  180. Santos, M. C., & Nobrega, J. A. (2006). Slurry nebulisation in plasmas for analysis of inorganic materials. Applied Spectroscopy Reviews, 41, 427–448.

    CAS  Google Scholar 

  181. Sasmaz, A., & Yaman, M. (2006). Distribution of chromium, nickel and cobalt in different parts of plant species and soil in mining area of Keban, Turkey. Communications in Soil Science and Plant Analysis, 37, 1845–1857.

    CAS  Google Scholar 

  182. Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.

    CAS  Google Scholar 

  183. Scarciglia, F., Barca, D., De Rosa, R., & Pulice, I. (2009). Application of laser ablation ICP-MS and traditional micromorphological techniques to the study of an Alfisol (Sardinia, Italy) in thin sections: Insights into trace element distribution. Geoderma, 152, 113–126.

    CAS  Google Scholar 

  184. Scheckel, K. G., Chaney, R. L., Basta, N. T., & Ryan, J. A. (2009). Advances in assessing bioavailability of metal(loids) in contaminated soils. Advances in Agronomy, 104, 1–52.

    CAS  Google Scholar 

  185. Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.

    CAS  Google Scholar 

  186. Scholz, R. W., Nothbaum, N., & May, T. W. (1994). Fixed and hypothesis-guided soil sampling methods – Principles, strategies and examples. In B. Markert (Ed.), Environmental sampling for trace analysis (pp. 335–345). Weinheim: VCH.

    Google Scholar 

  187. Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Science of the Total Environment, 263, 11–22.

    CAS  Google Scholar 

  188. Senesi, G. S., Dell’Aglio, M., Gaudiuso, R., De Giacomo, A., Zaccone, C., De Pascale, O., Miano, T. M., & Capitelli, M. (2009). Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS) with special emphasis on chromium. Environmental Research, 109, 413–420.

    CAS  Google Scholar 

  189. Sharp, B. L. (1988). Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry – A review 1 Nebulizers. Journal of Analytical Atomic Spectrometry, 3, 613–652.

    CAS  Google Scholar 

  190. Sharp, B. L. (1988). Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry – A review 2 Spray chambers. Journal of Analytical Atomic Spectrometry, 3, 939–965.

    Google Scholar 

  191. Shaw, M. J., & Haddad, P. R. (2004). The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 30, 403–431.

    CAS  Google Scholar 

  192. Shibata, Y., Suyama, J., Kitano, M., & Nakamura, T. (2009). X-ray fluorescence analysis of Cr, As, Se, Cd, Hg and Pb in soil using pressed powder pellet and loose powder methods. X-ray Spectrometry, 38, 410–416.

    CAS  Google Scholar 

  193. Soto-Jimenez, M. F., & Flegal, A. R. (2009). Origin of lead in the Gulf of California Ecoregion using stable isotope analysis. Journal of Geochemical Exploration, 101, 209–217.

    CAS  Google Scholar 

  194. Starr, M., Lindroos, A. J., Ukonmaanaho, L., Tarvainen, T., & Tanskanen, H. (2003). Weathering release of heavy metals from soil in comparison to deposition, litterfall and leaching fluxes in a remote, boreal coniferous forest. Applied Geochemistry, 18, 607–613.

    CAS  Google Scholar 

  195. Sturgeon, R. E. (2000). Current practice and recent developments in analytical methodology for trace element analysis of soils, plants and water. Communications in Soil Science and Plant Analysis, 31, 1479–1512.

    CAS  Google Scholar 

  196. Svete, O., Milacic, R., & Pihlar, B. (2000). Optimisation of an extraction procedure for determination of total water-soluble Zn, Pb and Cs and their species in soils from a mining area. Annali di Chimica, 90, 323–334.

    CAS  Google Scholar 

  197. Szakova, J., Tlustos, P., Goessler, W., Frkova, Z., & Najmanova, J. (2009). Mobility of arsenic and its compounds in soil and soil solution: The effect of soil pre-treatment and extraction methods. Journal of Hazardous Materials, 172, 1244–1251.

    CAS  Google Scholar 

  198. Takeda, A., Tsukada, H., Takaku, Y., Hisamatsu, S., Inaba, J., & Nanzyo, M. (2006). Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Journal of Soil Science and Plant Nutrition, 52, 406–417.

    CAS  Google Scholar 

  199. Takeda, A., Tsukada, H., Takaku, Y., & Hisamatsu, S. (2009). Fractionation of metal complexes with dissolved organic matter in a rhizosphere soil solution of a humus-rich Andosol using size exclusion chromatography with inductively coupled plasma mass spectrometry. Journal of Soil Science and Plant Nutrition, 55, 349–357.

    CAS  Google Scholar 

  200. Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshwar, Pakistan. Journal of Environmental Management, 79, 20–29.

    CAS  Google Scholar 

  201. Templeton, D. M., Ariese, F., Cornelis, R., Danielsson, L. G., Muntau, H., Van Leeuwen, H. P., & Lobinski, R. (2000). Guidelines for terms related to chemical speciation and fractionation of elements: Definitions, structural aspects and methodological approaches (IUPACrecommendations 2000). Pure and Applied Chemistry, 72, 1453–1470.

    CAS  Google Scholar 

  202. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Google Scholar 

  203. Tokalioglu, S., Kartal, S., & Gunes, A. A. (2001). Determination of heavy metals in soil extracts and plant tissues around a zinc smelter. International Journal of Environmental Analytical Chemistry, 80, 201–217.

    CAS  Google Scholar 

  204. Tokalioglu, S., Kartal, S., & Gunes, A. A. (2004). Statistical evaluation of bioavailability of metals to grapes growing in contaminated vineyard soils using single extractants. International Journal of Environmental Analytical Chemistry, 84, 691–705.

    CAS  Google Scholar 

  205. Tomiyasu, T., Nagano, A., Sakamoto, H., & Yonehara, N. (1996). Differential determination of organic mercury and inorganic mercury in sediment, soil and aquatic organisms by cold vapour atomic absorption spectrometry. Analytical Sciences, 12, 477–481.

    CAS  Google Scholar 

  206. Tseng, Y. J., Liu, C. C., & Jiang, S. J. (2007). Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of As and Se in soil and sludge. Analytica Chimica Acta, 588, 173–178.

    CAS  Google Scholar 

  207. Uprety, D., Hejcman, M., Szakova, J., Kunzova, E., & Tlustot, P. (2009). Concentrations of nutrients in arable soil after long-term application of organic and inorganic fertilisers. Nutrient Cycling in Agroecosystems, 85, 241–252.

    CAS  Google Scholar 

  208. Ure, A. M. (1991). Trace element speciation in soils, soil extracts and solutions. Microchimica Acta, 2, 49–57.

    CAS  Google Scholar 

  209. Ure, A. M. (1994). The effects of drying on element concentrations and speciation in soils and sediments. Quimica Analitica, 13, S64–S69.

    CAS  Google Scholar 

  210. Ure, A. M., & Davidson, C. M. (2002). Chemical speciation in the environment. Oxford: Blackwell.

    Google Scholar 

  211. Ure, A. M., & Shand, C. A. (1974). Determination of mercury in soils and related materials by cold vapour atomic absorption spectrometry. Analytica Chimica Acta, 72, 63–77.

    CAS  Google Scholar 

  212. Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: And account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    CAS  Google Scholar 

  213. Valsecchi, S. M., & Polesello, S. (1999). Analysis of inorganic species in environmental samples by capillary electrophoresis. Journal of Chromatography. A, 834, 363–385.

    CAS  Google Scholar 

  214. Vanhoof, C., Corthouts, V., & Tirez, K. (2004). Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils. Journal of Environmental Monitoring, 6, 344–350.

    CAS  Google Scholar 

  215. Vodyanitskii, Y. N., Vasil’ev, A. A., Morgun, E. G., & Rumyantseva, K. A. (2007). Selectivity of reagents used to extract iron from soil. Eurasian Soil Science, 40, 1076–1086.

    Google Scholar 

  216. Voegelin, A., Weber, F. A., & Kretzschmar, R. (2007). Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 71, 5804–5820.

    CAS  Google Scholar 

  217. Wagner, G., Mohr, M. E., Sprengart, J., Desaules, A., Muntau, H., Theocharopoulos, S., & Quevauviller, P. (2001). Objectives, concept and design of the CEEM soil project. Science of the Total Environment, 264, 3–15.

    CAS  Google Scholar 

  218. Wang, X., Liu, Y. G., Zeng, G. M., Chai, L. Y., Xiao, X., Song, X. C., & Min, Z. Y. (2008). Pedological characteristics of Mn mine tailings and metal accumulation in native plants. Chemosphere, 72, 1260–1266.

    CAS  Google Scholar 

  219. Wang, S. L., Nan, Z. R., Liu, X. W., Li, Y., Qin, S., & Ding, H. X. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152, 290–295.

    CAS  Google Scholar 

  220. West, M., Ellis, A. T., Potts, P. J., Streli, C., Vanhoof, C., Wegrzynek, D., & Wobrauschek, P. (2009). Atomic spectrometry update: X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 24, 1289–1326.

    CAS  Google Scholar 

  221. Williams, T. M., Rawlins, B. G., Smith, B., & Breward, N. (1998). In-vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, southern Thailand: A basis for improved human health risk assessment. Environmental Geochemistry and Health, 20, 169–177.

    CAS  Google Scholar 

  222. Wilson, M. A., Burt, R., Lynn, W. C., & Klameth, L. C. (1997). Trace elemental analysis digestion method evaluation on soils and clays. Communications in Soil Science and Plant Analysis, 28, 407–426.

    CAS  Google Scholar 

  223. Winefordner, J. D., & Elser, R. C. (1971). Atomic fluorescence spectrometry. Analytical Chemistry, 43, 24A–42A.

    CAS  Google Scholar 

  224. Wobrauschek, P. (2007). Total reflection x-ray fluorescence analysis – A review. X-ray Spectrometry, 36, 289–300.

    CAS  Google Scholar 

  225. Wong, J. W. C., & Selvan, A. (2009). Growth and accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost. Archives of Environmental Contamination and Toxicology, 57, 515–523.

    CAS  Google Scholar 

  226. Wragg, J., & Cave, M. R. (2002). In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review (R&D Technical report P5-062/TR/01). British Geological Survey, Environment Agency (UK).

    Google Scholar 

  227. Wragg, J., Cave, M. R., Taylor, H., Basta, N., Brandon, E., Casteel, S., Gron, C., Ommen, A., & Van de Wiele, T. (2009). Inter-laboratory trial of a unified bioaccessibility procedure. (Open report OR/07/027). British Geological Survey (UK).

    Google Scholar 

  228. Yang, Q. W., Lan, C. Y., & Shy, W. S. (2008). Copper and zinc in a paddy field and their potential ecological impacts affected by wastewater from a lead/zinc mine, P.R. China. Environmental Monitoring and Assessment, 147, 65–73.

    CAS  Google Scholar 

  229. Yilmaz, F., Yilmaz, Y. Z., Ergin, M., Erkol, A. Y., Muftuoglu, A. E., & Karakelle, B. (2003). Heavy metal concentrations in surface soils of Izmit Gulf region, Turkey. Journal of Trace and Microprobe Techniques, 21, 523–531.

    CAS  Google Scholar 

  230. Yip, Y. C., & Tong, W. F. (2009). Assessing laboratory performance in intercomparisons for inorganic analysis. Trends in Analytical Chemistry, 28, 1276–1294.

    CAS  Google Scholar 

  231. Yuan, C. G., He, B., Gao, E. L., Lu, J. X., & Jiang, G. B. (2007). Evaluation of extraction methods for arsenic speciation in polluted soil and rotten ore by HPLC-HG-AFS analysis. Microchimica Acta, 159, 175–182.

    CAS  Google Scholar 

  232. Zhang, N., Sun, G. L., & Ma, H. R. (2007). Determination of ultra-trace selenium in mineral samples by hydride generation atomic fluorescence spectrometry with pressurised PTFE vessel acid digestion. Minerals Engineering, 20, 1397–1400.

    CAS  Google Scholar 

  233. Zhang, X. Y., Tang, L. S., Zhang, G., & Wu, H. D. (2009). Heavy metal contamination in a typical mining town of a minority and mountain area, South China. Bulletin of Environmental Contamination and Toxicology, 82, 31–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davidson, C.M. (2013). Methods for the Determination of Heavy Metals and Metalloids in Soils. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_4

Download citation

Publish with us

Policies and ethics