Sources of Heavy Metals and Metalloids in Soils

Part of the Environmental Pollution book series (EPOL, volume 22)


Heavy metals and metalloids in soils are derived from the soil parent material (lithogenic source) and various anthropogenic sources, most of which involve several metal(loid)s. There are many different anthropogenic sources of heavy metal(loid) contamination affecting both agricultural and urban soils. However, localised contamination from a predominant single source, such as a metal smelter can have a marked effect on soils, vegetation and possibly also on the health of the local population, especially in countries where there are inadequate emission controls and soil quality standards. In general, soils at industrial sites can have distinct groups of heavy metal(loid) contaminants, which depend on the respective industries and their raw materials and products. Soils in all urban areas are generally contaminated with lead (Pb), zinc (Zn), cadmium (Cd) and copper (Cu) from traffic, paint and many other non-specific urban sources. Although the heavy metal(loid) composition of agricultural soils tends to be more closely governed by the parent material, inputs from sources such as deposition of long-distance, atmospherically-transported aerosol particles from fossil fuel combustion and other sources, organic material applications and contaminants in fertilisers can also be significant. Removal of Pb from petrol and paints, changes in the type and structure of industries and strict regulations on atmospheric emissions and waste water discharges have resulted in a general reduction in the loads of heavy metal(loid)s reaching soils in many countries. However, historic contamination still affects soils in many areas and may have impacts for decades or even centuries afterwards.


Lithogenic Anthropogenic Atmospheric deposition Contamination Urban Ores Mining Industry 


  1. 1.
    Alloway, B. J., Zhang, P., Mott, C., Smith, S. R., Chambers, B. J., Nicholson, F. A., Calton-Smith, C., & Andrews A. J. (2000). The vulnerability of soils to pollution by heavy metals (Final Report for MAFF Project No. SP0127), London: MAFF.Google Scholar
  2. 2.
    Ayrault, S., Senhou, A., Moskura, M., & Gaudry, A. (2010). Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmospheric Environment. doi: 10.1016/jatmosenv. 2010.060035.
  3. 3.
    Baize, D., & Chretien, J. (1994). Les couverture pédologiques de la plate-forme sinémurienne en Bourggone: Particularities morphololgiques et pédo-géochemiques. Étude et Gestion des Sols,2, 7–27.Google Scholar
  4. 4.
    Bak, J., Jensen, J., Larsen, M. M., Pritzl, G., & Scott-Fordsmand, J. (1997). A heavy metal monitoring-programme in Denmark. The Science of the Total Environment, 207, 179–186.CrossRefGoogle Scholar
  5. 5.
    Bellows, B. C. (2005). Arsenic in poultry litter: Organic regulations.
  6. 6.
    Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. The Science of the Total Environment, 356, 154–164.CrossRefGoogle Scholar
  7. 7.
    Breward, N. (2007). Arsenic and presumed resistate trace element geochemistry of the Lincolnshire (UK) sedimentary ironstone, as revealed by regional geochemical survey using soil, water and stream sediment sampling. Applied Geochemistry, 22, 1970–1993.CrossRefGoogle Scholar
  8. 8.
    Brus, D. J., Lame, F. P. J., & Nieuwenhuis, R. H. (2009). National baseline survey of soil quality in the Netherlands. Environmental Pollution. doi: 10.1016/j.envpol.2009.02.028.
  9. 9.
    Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32, 2109–2121.CrossRefGoogle Scholar
  10. 10.
    Chatterjee, A., & Bannerjee, R. N. (1999). Determination of lead and other metals in a residential area of greater Calcutta. The Science of the Total Environment, 227, 175–185.CrossRefGoogle Scholar
  11. 11.
    Chen, M., Ma, L. Q., & Harris, W. (1998). Background concentrations of trace metals in Florida surface soils (Annual Progress Rep.). Gainesville: University of Florida.Google Scholar
  12. 12.
    Chen, T., Liu, X., Zhu, M., Zhao, K., Wi, J., Xu, J., & Huang, P. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–88.CrossRefGoogle Scholar
  13. 13.
    Clement, P., Olsen, N. J., & Madsen, P. (1995). Mundelstrup, Denmark: The clean-up of a contaminated town. Land Contamination and Reclamation, 3, 39–46.Google Scholar
  14. 14.
    Codling, E. T. (2007). Long-term effects of lime, phosphorus and iron amendments on water-extractable arsenic, lead and bioaccessible lead from contaminated orchard soils. Soil Science, 172(10), 811–819.CrossRefGoogle Scholar
  15. 15.
    Coleman, L., Bragg, L. J., & Finkelman, R. B. (1993). Distribution and mode of occurrence of selenium in US coals. Environmental Geochemistry and Health, 15, 215–227.CrossRefGoogle Scholar
  16. 16.
    Culbard, E. B., Thornton, I., Watt, J., Wheatley, M., Moorcroft, S., & Thomson, M. (1988). Metal contamination in British urban dusts and soils. Journal of Environmental Quality, 17, 226–234.CrossRefGoogle Scholar
  17. 17.
    da Silva, E. F., Mlayah, A., Gomes, C., Noronha, F., Charef, A., Sequeira, C., Esteves, V., & Marques, A. R. F. (2010). Heavy elements in the phosphorites from Kalaat Khasba mine (North-western Tunisia): Potential implications on the environment and human health. Journal of Hazardous Materials. doi: 10,10,1016/j.hazmat.2010.06.020.
  18. 18.
    EC. (2000, April 7). European Commission 2000 working document on sludge 3rd draft. Brussels: DG Environment.Google Scholar
  19. 19.
    Eckel, H., Roth, U., Döhler, H., Nicholson, F. A., & Unwin, R. (Eds.). (2005). Assessment and reduction of heavy metal input into agro-ecosystems (AROMIS). Darmstadt: KTBL.Google Scholar
  20. 20.
    Fang, C.-G., Huang, Y.-L., & Huang, J.-H. (2010). Study of atmospheric metallic elements pollution in Asia during 2000–2007. Journal of Hazardous Materials, 180, 115–121.CrossRefGoogle Scholar
  21. 21.
    Farmer, J. G., Eades, L. J., & Graham, M. C. (1999). The lead content and isotopic composition of British Coals and their implications for past and present releases of lead to the UK environment. Environmental Geochemistry and Health, 21, 257–272.CrossRefGoogle Scholar
  22. 22.
    Fernàndez-Calviňo, D., Paterio-Moure, M., López-Periago, E., Arias-Estevez, M., & Nóvoa-Muňoz, J. C. (2008). Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW Spain). European Journal of Soil Science, 59, 315–326.CrossRefGoogle Scholar
  23. 23.
    Finch, T. F., & Ryan, P. (1966). Soils of Co. Limerick (Soil Survey Bull. No. 16). Dublin: National Soil Survey of Ireland.Google Scholar
  24. 24.
    Flight, D. M. A., & Scheib, A. J. (2011). Soil geochemical baselines in UK urban centres: The G-BASE project. Chapter 13. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 186–206). Chichester: Wiley.CrossRefGoogle Scholar
  25. 25.
    Food and Agriculture Organisation (FAO). (2008). Current world fertilizer trends and outlook to 2011–12. Rome: FAO.Google Scholar
  26. 26.
    Fouad, H. K., & El-Rakaiby, R. M. (2009). Environmental geochemistry for heavy metals and uranium potentiality in oil shale sediments, Quseir, Red Sea, Egypt. Journal of Applied Sciences Research, 5(8), 914–921.Google Scholar
  27. 27.
    Fuge, R. (2005). Anthropogenic sources. Chap 3. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology (pp. 43–60). Amsterdam: Elsevier.Google Scholar
  28. 28.
    Gabbard, A. (1993). Coal combustion: Nuclear resource or danger. Oak Ridge National Laboratory Review, 26(3 and 4).
  29. 29.
    Gansler, D. (2009, June 26). A deadly ingredient in a chicken dinner. The Washington Post.Google Scholar
  30. 30.
    Garrett, R. G. (2007). Natural distribution and abundance of elements. Chap 2. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology (pp. 17–41). Amsterdam: Elsevier.Google Scholar
  31. 31.
    Garrett, R. G., Porter, A. B., Hunt, P. A., & Lawlor, G. C. (2008). The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites. Applied Geochemistry, 23, 822–834.CrossRefGoogle Scholar
  32. 32.
    Goldhaber, M. B., Morrison, J. M., Holloway, J. M., Wanty, R., Helsel, D. R., & Smith, D. B. (2009). A regional soil and sediment geochemical study in northern California. Applied Geochemistry, 24, 1482–1499.CrossRefGoogle Scholar
  33. 33.
    Gray, C. W., McLaren, R. G., & Roberts, A. H. C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. The Science of the Total Environment, 305, 105–115.CrossRefGoogle Scholar
  34. 34.
    Harmens, H., Norris, D. A., Koerber, G. R., Buse, A., Steinnes, E., & Rühling, A. (2008). Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environmental Pollution, 151, 368–376.CrossRefGoogle Scholar
  35. 35.
    Heimbürger, L.-E., Migon, C., Dufour, A., Chiffoleau, J.-F., & Cossa, D. (2010). Trace metal concentration in the North-western Mediterranean atmospheric aerosol between 1986 and 2008. Seasonal patterns and decadal trends. The Science of the Total Environment, 408, 2629–26238.CrossRefGoogle Scholar
  36. 36.
    Hjortenkrans, D. S. T., Bergbäck, B. G., & Häggerud, A. V. (2007). Metal emissions from brake linings and Tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science and Technology, 41, 5224–5230.CrossRefGoogle Scholar
  37. 37.
    Horner, J. M. (2004). Lead in house paints – Still a health risk that should not be overlooked. Journal of Environmental Health Research, 3(1).
  38. 38.
    Huang, S., Tu, J., Liu, H., Liao, Q., Feng, J., Weng, Z., & Huang, G. (2009). Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmospheric Environment. doi: 10.101016/j.atmosenv.2009.07.055.
  39. 39.
    Hudson-Edwards, K. A., Macklin, M. G., Brewer, P. A., & Dennis, I. A. (2008). Assessment of metal mining-contaminated river sediments in England and Wales (Science Report SC030136/4). Bristol: Environment Agency.Google Scholar
  40. 40.
    Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  41. 41.
    Jacquat, O., Voegelin, A., Juillot, F., & Kretzschmar, R. (2009). Changes in Zn speciation during soil formation from Zn-rich limestones. Geochimica et Cosmochimica Acta, 73, 5554–5571.CrossRefGoogle Scholar
  42. 42.
    Johnson, C. A., Moench, H., Werin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34, 248–254.Google Scholar
  43. 43.
    Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.Google Scholar
  44. 44.
    Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.CrossRefGoogle Scholar
  45. 45.
    Kim, K. W., & Thornton, I. (1993). Influence of urnaiferous black shales on cadmium, molybdenum and selenium in soils and crop plants in Deog-Pyong area of South Korea. Environmental Geochemistry and Health, 15, 119–133.CrossRefGoogle Scholar
  46. 46.
    Komárek, M., Čadková, E., Chrastný, V., Bordas, F., & Bolinger, J.-C. (2010). Contamination of vineyards oils with fungicides: A review of environmental and toxicological aspects. Environmental International, 36, 138–151.CrossRefGoogle Scholar
  47. 47.
    Krauskopf, K. B. (1967). Introduction to geochemistry. New York: McGraw Hill.Google Scholar
  48. 48.
    Låg, J., & Bølviken, B. (1974). Some naturally heavy metal poisoned areas of interest in prospecting soil chemistry and geomedicine. Norges Geologiske Undersøkelse, 304, 73–96.Google Scholar
  49. 49.
    Laidlaw, M. A. S., & Filippelli, G. M. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Applied Geochemistry, 23, 2021–2039.CrossRefGoogle Scholar
  50. 50.
    Langenkamp, H., Düwel, O., & Utermann, J. (2001, September). Progress report: Trace element and organic matter contents of European soils. First results of the second phase of the “Short Term Action”. Ispra: JRC.Google Scholar
  51. 51.
    Levinson, A. A. (1980). Introduction to exploration geochemistry (2nd ed.). Wilmette: Applied Publishing.Google Scholar
  52. 52.
    Lim, J.-H., Sabin, L. D., Schiff, K., & Stolzenbach, K. D. (2006). Concentration, size distribution and dry deposition of particle-associated metals in the Los Angeles region. Atmospheric Environment, 40, 7810–7823.CrossRefGoogle Scholar
  53. 53.
    Liu, J., Zheng, B., Aposhian, H. V., Zhou, Y., Chen, M-L, Zhang, A., & Waalkes, M. P. (2002). Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environmental Health Perspectives.
  54. 54.
    Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y.-G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management. doi: 10.1016/j.jenvman. 2009.01.1011.
  55. 55.
    Marples, A., & Thornton, I. (1980). The distribution of Cd derived from geochemical and industrial sources in agricultural soil and pasture herbage in parts of Britain. Proceedings of ‘Cadmium 79’Conference in Cannes, Metals Bulletin, 74–79.Google Scholar
  56. 56.
    McGrath, S. P., & Loveland, P. J. (1992). Soil geochemical Atlas of England and Wales. Glasgow: Blackie Academic & Professional.Google Scholar
  57. 57.
    McLaughlin, M. J., Tiller, K. G., Beech, T. A., & Smart, M. K. (1994). Soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 34, 1013–1018.CrossRefGoogle Scholar
  58. 58.
    Mekiffer, B., Renger, M., & Wessolek, G. (2000). Contamination of urban soils – First results from a databank. In W. Burghardt & C. Dornauf (Eds.), Proceedings of the 1st International Conference on soils of urban, industrial, traffic and mining areas, Essen, Vol III, 593–598.Google Scholar
  59. 59.
    Meuser, H. (2010). Contaminated urban soils. Dordrecht: Springer.CrossRefGoogle Scholar
  60. 60.
    Mielke, H. W., & Gonzales, C. (2008). Mercury (Hg) and lead (Pb) in interior and exterior New Orleans house paint films. Chemosphere, 72, 882–885.CrossRefGoogle Scholar
  61. 61.
    Mielke, H. W., Blake, B., Burroughs, S., & Hassinger, N. (1984). Urban lead levels in Minneapolis: The case of the Hmong children. Environmental Research, 34, 64–76.CrossRefGoogle Scholar
  62. 62.
    Mielke, H. W., Powell, E. T., Gonzales, C. R., & Mielke, P. (2001). Multiple metal contamination from house paints: Consequences of power sanding and paint scraping in New Orleans. Environmental Health Perspectives, 109, 973–978.CrossRefGoogle Scholar
  63. 63.
    Milieu Ltd., WRc, & RPA. (2008). Environmental, economic and social impacts of the use of sewage sludge on land (Final Report for the European Commission, DG Environment under Study Contract DG ENV.G.4/ETU/2008/0076r).Google Scholar
  64. 64.
    Millstone, E. (1997). Lead and public health. London: Earthscan Publications.Google Scholar
  65. 65.
    Miranda, M., Benedito, J. L., Blanco-Penedo, I., Lopez-Lamas, C., Merino, A., & Lopez-Alonso, M. (2009). Metal accumulation in cattle raised in a serpentine-soil area: Relationship between metal concentrations in soil, forage and animal tissues. Journal of Trace Elements in Medicine and Biology, 23, 231–238.CrossRefGoogle Scholar
  66. 66.
    Mitchell, R. L. (1964). Trace elements in soils, Chap 8. In F. E. Bear (Ed.), Chemistry of the soil (2nd ed.). New York: Reinhold Publishing Corporation.Google Scholar
  67. 67.
    Morgan, H. (1988). Metal contamination at Shipham, Chap 2. In H. Morgan (Ed.), The Shipham report – An investigation into cadmium contamination and its implications for human health. The Science of the Total Environment, 75(Special Issue), 11–20.Google Scholar
  68. 68.
    Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311, 205–219.CrossRefGoogle Scholar
  69. 69.
    Nicholson, F., Rollett, A., & Chambers, B. (2009). A review of practices on returns to land of organic materials containing potentially toxic elements (PTEs) and organic contaminants (Report 1 for Defra Project SP0569). Nottinghamshire: ADAS.Google Scholar
  70. 70.
    Nicholson, F., Rollett, A., & Chambers, B. (2010). The Defra “Agricultural Soil Heavy Metal Inventory for 2008” (Report 3 for Defra Project SP0569). Nottinghamshire: ADAS.Google Scholar
  71. 71.
    Norra, S., Weber, A., Kramar, U., & Stüber, D. (2001). Mapping of trace metals in urban soils-the example of Mühlburg/Karlsruhe. Journal of Soil and Sediments, 2, 77–93.Google Scholar
  72. 72.
    Oze, C., Fendorff, S. M., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304, 67–101.CrossRefGoogle Scholar
  73. 73.
    Page, A. L., Chang, A. C., & El-Amamy, M. (1987). Cadmium levels in soils and crops in the United States. Chap 10. In T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment. SCOPE 31 (pp. 119–146). Chichester: Wiley.Google Scholar
  74. 74.
    Peters, W. C. (1978). Exploration and mining geology. New York: Wiley.Google Scholar
  75. 75.
    Proctor, J., & Baker, A. (1994). The importance of nickel for plant growth in ultramafic (Serpentine) soils. Chap 12. In S. Ross (Ed.), Toxic metals in soil-plant systems (pp. 415–432). Chichester: Wiley.Google Scholar
  76. 76.
    Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C., & Föllmi, K. B. (2009). Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma, 150, 287–301.CrossRefGoogle Scholar
  77. 77.
    Rashidinejad, F., Osanloo, M., & Rezai, B. (2008). An environmental oriented model for optimum cut-off grades in open pit mining projects to minimize acid mine drainage. International Journal of Environmental Science and Technology, 5(2), 183–194.Google Scholar
  78. 78.
    Reiman, C., Siewers, U., Tarainen, T., Bityukova, L., Eriksson, J., Gilucis, A., Gregorauskiene, V., Lukashec, V. K., Matinian, N. N., & Pasieczna, A. (2003). Agricultural soils of northern Europe: A geochemical atlas. Stuttgart: Schweizerbart.Google Scholar
  79. 79.
    Rimmer, D. L., Vizard, C. G., Pless-Mulloli, T., Singleton, I., Air, V. S., & Keatinge, Z. (2006). Metal contamination of urban soils in the vicinity of a municipal waste incinerator: One source among many. The Science of the Total Environment, 356, 207–216.CrossRefGoogle Scholar
  80. 80.
    Robinson, G. R., Larkins, P., Boughton, C. J., Bradley, W. R., & Sibrell, P. L. (2007). Assessment of contamination from arsenic pesticide use on orchards in the Great Valley Region, Virginia and West Virginia. Journal of Environmental Quality, 36, 654–663.CrossRefGoogle Scholar
  81. 81.
    Rooney, C. P., McLaren, R. G., & Cresswell, R. J. (1999). Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water, Air, and Soil Pollution, 116, 535–548.CrossRefGoogle Scholar
  82. 82.
    Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed.). London: Academic.Google Scholar
  83. 83.
    Ross, S. M., Wood, M. D., Copplestone, D., Warriner, M., & Crook, P. (2007). UK soil and herbage pollutant survey. Environmental concentrations of heavy metals in UK soil and herbage (Report No. 7). Bristol: Environment Agency.Google Scholar
  84. 84.
    Salminen, R. (Chief-Editor). (2005). Foregs geochemical atlas of Europe, EuroGeoSurveys.
  85. 85.
    Seibold, E., & Berger, W. H. (1993). The sea floor. An introduction to marine geology (2nd ed.). Frankfurt: Fischer Verlag.Google Scholar
  86. 86.
    Shapiro, C. S., Appleby, L. J., Devell, L., Mishra, U. C., & Voice, E. H. (1993). Sources. Chap 1. In F. Warner & R. Harrison (Eds.), Radioecology after Chernobyl (pp. 1–31). Chichester: Wiley.Google Scholar
  87. 87.
    Spurgeon, D. J., Rowland, P., Ainsworth, N. G., Rothery, P., Long, S., & Black, H. I. J. (2008). Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V, and Zn) in British soils. Environmental Pollution, 153, 273–283.CrossRefGoogle Scholar
  88. 88.
    Tang, G., Tangfu, X., Wang, S., Lei, J., Zhand, M., Yuanyuan, G., Li, H., Ning, Z., & He, L. (2009). High cadmium concentrations in areas with endemic fluorosis: A serious hidden toxin? Chemosphere, 76, 300–305.CrossRefGoogle Scholar
  89. 89.
    Tauber, C. (1988). Spurenelemente in Flugaschen (496 p). Köln: Verlag TÜV Rheinland GmbH (in German) referenced in; Reiman, C., Siewers, U., Tarainen, T., Bityukova, L., Eriksson, J., Gilucis, A., Gregorauskiene, V., Lukashec, V. K., Matinian, N. N., & Pasieczna, A. (2003). Agricultural soils of northern Europe: A geochemical atlas. Stuttgart: Schweizerbart.Google Scholar
  90. 90.
    Thornton, I. (1988). Metal content of soils and dusts. Chap. 3. In H. M. Morgan (Ed.), The Shipham report: An investigation into cadmium contamination and its implications for human health. The Science of the Total Environment, 75, 21–40.Google Scholar
  91. 91.
    Thornton, I., Farago, M. E., Thums, C. R., Parrish, R. R., McGill, R. A. R., Breward, N., Fortey, N. J., Simpson, P., Young, S. D., Tye, A. M., Crout, N. M. J., Hough, R. L., & Watt, J. (2008). Urban geochemistry: Research strategies to assist risk assessment and remediation of brownfield sites in urban areas. Environmental Geochemistry and Health, 30, 565–576.CrossRefGoogle Scholar
  92. 92.
    Tremel, A., Masson, P., Sterckeman, T., Baize, D., & Mench, M. (1997). Thallium in French agrosystems-1. Thallium contents in arable soils. Environmental Pollution, 95, 293–302.CrossRefGoogle Scholar
  93. 93.
    Tristán, E., Demetriades, A., Ramsey, M. H., Rosenbaum, M. S., Stavrakis, P., Thornton, I., Vassiliades, E., & Vergou, K. (2000). Spatially resolved hazard and exposure assessments of lead in soil at Lavrion Greece. Environmental Research A., 82, 33–45.CrossRefGoogle Scholar
  94. 94.
    U.S. Environmental Protection Agency (EPA). (1999). Estimating risk from contaminants contained in agricultural fertilizers (Draft Report). Washington: U.S. Environmental Protection Agency.Google Scholar
  95. 95.
    Van Meirvenne, M., Meklit, T., Verstraete, S., De Boever, M., & Tack, F. (2008). Could shelling in the First World War have increased copper concentrations in the soil around Ypres? European Journal of Soil Science, 59, 372–379.CrossRefGoogle Scholar
  96. 96.
    Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.CrossRefGoogle Scholar
  97. 97.
    Yesilonis, I. D., Pouyat, R. V., & Neerchal, N. K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156, 723–731.CrossRefGoogle Scholar
  98. 98.
    Zanin, Y. N., Eder, V. G., Zamirailova, A. G., & Krasavchikov, V. O. (2010). Models of REE distribution in the black shale Bazhenov Formation of the West Siberian marine basin, Russia. Chemie der Erde. doi: 10.1016/j.chemer.2010.04.001.
  99. 99.
    Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008). Statistical analyses of geochemical variable in soils of Ireland. Geoderma, 146, 378–390.CrossRefGoogle Scholar
  100. 100.
    Zhuang, P., McBride, M., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment, 407, 1551–1561.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental SciencesUniversity of ReadingReadingUK

Personalised recommendations