Skip to main content

Zinc

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Zinc (Zn) is naturally present in all soils in typical background concentrations 10–100 mg Zn kg–1. Human activities have enriched topsoils with Zn through atmospheric depositions, fertilization and sewage sludge application. Zinc contaminated soils with negative impact on the soil ecosystem are found around Zn smelters, near Zn mining sites and under galvanized structures. The solubility of Zn in soils is almost invariably controlled by sorption reactions. Pure Zn minerals (carbonates, silicates, hydroxides) have been detected at high total soil Zn concentrations (>1,000 mg Zn kg−1) but are rarely controlling Zn solubility. Zinc is specifically sorbed as Zn2+ on pH-dependent binding sites of oxyhydroxides and organic matter and, at high concentrations, by ion exchange reactions on clay minerals. In general, soil solution Zn concentrations increase fivefold per unit pH decrease. Zinc deficiency for agricultural crops is found in about 1/3 of worldwide soils due to low total Zn concentrations and/or high pH. Soils containing less than 0.5 mg Zn kg−1 diethylenetriaminepentaacetic acid (DTPA) extractable Zn are potentially Zn deficient. Dietary Zn deficiency in humans is often associated with Zn deficient soils and crop Zn biofortification is now a global initiative through selection for Zn-efficient crops or judicious fertilisation. Zinc toxic soils are less widespread than deficient ones. Risk of Zn toxicity is manifested by effects on soil dwelling organisms, i.e. plants, invertebrates and soil microorganisms. Toxic effects are identified at total Zn concentrations 100 to >1,000 mg kg−1 and toxicity decreases with increasing soil CEC. Risk assessments of Zn have proposed maximal additions as low as 26 mg added Zn kg−1 in the EU to maintain soil ecosystem structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.). Brussels/Paris: International Zinc Association/International Fertilizer Industry Organization.

    Google Scholar 

  2. Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548.

    Article  CAS  Google Scholar 

  3. Andersen. (2001). Disposal and recycling routes for sewage sludge. Part 3 – Scientific and technical report. Report for the EU Commission. 135 p. Available at http://ec.europa.eu/environment/waste/sludge/sludge_disposal.htm

  4. Anderson, P. R., & Christensen, T. H. (1988). Distribution coefficients of Cd, Co, Ni, and Zn in soils. Journal of Soil Science, 39, 15–22.

    Article  CAS  Google Scholar 

  5. Armour, J. D., Ritchie, G. S. P., & Robson, A. D. (1989). Changes with time in the availability of soil applied zinc to navy beans and in the chemical extraction of zinc from soils. Australian Journal of Soil Research, 27(4), 699–710.

    Article  CAS  Google Scholar 

  6. Baize, D. (1997). Teneurs totales en éléments traces métalliques dans le sols (France). Paris: Institut National de la Récherche Agronomique.

    Google Scholar 

  7. Bengtsson, H., Oborn, I., Jonsson, S., Nilsson, I., & Andersson, A. (2003). Field balances of some mineral nutrients and trace elements in organic and conventional dairy farming – A case study at Ojebyn, Sweden. European Journal of Agronomy, 20(1–2), 101–116.

    Article  CAS  Google Scholar 

  8. Blok, J. (2005). Environmental exposure of road borders to zinc. Science of the Total Environment, 348(1–3), 173–190.

    Article  CAS  Google Scholar 

  9. Bolland, M. D. A., Posner, A. M., & Quirk, J. P. (1977). Zinc adsorption by goethite in absence and presence of phosphate. Australian Journal of Soil Research, 15(3), 279–286.

    Article  CAS  Google Scholar 

  10. Bostick, B. C., Hansel, C. M., La Force, M. J., & Fendorf, S. (2001). Seasonal fluctuations in zinc speciation within a contaminated wetland. Environmental Science and Technology, 35(19), 3823–3829.

    Article  CAS  Google Scholar 

  11. Boutron, C. F., Gorlach, U., Candelone, J. P., Bolshov, M. A., & Delmas, R. J. (1991). Decrease in anthropgenic lead, cadmium and zinc in greenland snows since the late 1960s. Nature, 353(6340), 153–156.

    Article  CAS  Google Scholar 

  12. Brennan, R. F. (1990). Reaction of zinc with soil affecting its availability to subterranean clover.2. Effect of soil properties on the relative effectiveness of applied zinc. Australian Journal of Soil Research, 28(2), 303–310.

    Article  CAS  Google Scholar 

  13. Brennan, R. F., Armour, J. D., & Reuter, D. J. (1993). Diagnosis of zinc deficiency. In A. D. Robson (Ed.), Zinc in Soils and Plants. Dordrecht: Kluwer Academic Publishers, 206 pp (Chap 12).

    Google Scholar 

  14. Buekers, J., Degryse, F., Maes, A., & Smolders, E. (2008). Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. European Journal of Soil Science, 59(6), 1160–1170 [Article].

    Article  CAS  Google Scholar 

  15. Buekers, J., Van Laer, L., Amery, F., Van Buggenhout, S., Maes, A., & Smolders, E. (2007). Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. European Journal of Soil Science, 58(6), 1514–1524 [Article].

    Article  CAS  Google Scholar 

  16. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1–2), 1–17.

    CAS  Google Scholar 

  17. Cakmak, I. (2010). Biofortification of cereals with zinc and iron through fertilization strategy. In 19th World Congress of Soil Science, Soil Solutions for a Changing World 5, 1–6 August 2010, Brisbane, Australia.

    Google Scholar 

  18. Cakmak, I., Pfeiffer, W. H., & McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1), 10–20.

    Article  CAS  Google Scholar 

  19. Cakmak, I., Yilmaz, A., Kalayci, M., Ekiz, H., Torun, B., Erenoglu, B., et al. (1996). Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 180(2), 165–172.

    Article  CAS  Google Scholar 

  20. Charlatchka, R., & Cambier, P. (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water, Air, and Soil Pollution, 118(1–2), 143–167.

    Article  CAS  Google Scholar 

  21. Chaudri, A., McGrath, S., Gibbs, P., Chambers, B., Carlton-Smith, C., Bacon, J., et al. (2008). Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments with sewage sludge cake, metal-amended liquid sludge or metal salts: Effects of zinc, copper and cadmium. Soil Biology and Biochemistry, 40(7), 1670–1680.

    Article  CAS  Google Scholar 

  22. Chen, J. S., Wei, F. S., Zheng, C. J., Wu, Y. Y., & Adriano, D. C. (1991). Background concentrations of elements in soils of China [Proceedings Paper]. Water, Air, and Soil Pollution, 57–8, 699–712.

    Article  Google Scholar 

  23. Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, and Soil Pollution, 90(3–4), 543–556.

    Article  CAS  Google Scholar 

  24. Cleven, R. F. M. J., Janus, J. A., Annema, J. A., & Slooff, W. (1993). Integrated criteria document zinc (RIVM Report 710401028). Bilthoven: National Institute of Public Health and the Environment. 278 p. Available at http://www.rivm.nl/bibliotheek/rapporten/710401028.html

  25. Crommentuijn, G. H. (1994). Guidance on the derivation of ecotoxicological criteria for serious soil contamination in view of the intervention value for soil clean-up (Report No 955001 003). The Hague: National Institute of Public Health and the Environment.

    Google Scholar 

  26. Davis, R. D., & Beckett, P. H. T. (1978). Upper critical levels of toxic elements in plants.2. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80(1), 23–32.

    Article  CAS  Google Scholar 

  27. De Vries, W., Römkens, P. F. A. M., & Voogd, J. C. H. (2004). Prediction of the long term accumulation and leaching of zinc in Dutch agricultural soils: A risk assessment study (Alterra-Report 1030). 93 p. Wageningen: Alterra.

    Google Scholar 

  28. Degryse, F., Buekers, J., & Smolders, E. (2004). Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. European Journal of Soil Science, 55(1), 113–121.

    Article  CAS  Google Scholar 

  29. Degryse, F., Smolders, E., & Parker, D. R. (2009). Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications – A review. European Journal of Soil Science, 60(4), 590–612.

    Article  CAS  Google Scholar 

  30. Degryse, F., Voegelin, A., Jacquat, O., Kretzschmar, R., & Smolders, E. (2011). Characterization of zinc in contaminated soils: Complementary insights from isotopic exchange, batch extractions, and XAFS spectroscopy. Accepted for publication in European Journal of Soil Science, 62(2), 318–330.

    Google Scholar 

  31. DoE. (1996). Code of practice for agriculture use of sewage sludge. London: DoE Publications.

    Google Scholar 

  32. Du Laing, G., Vanthuyne, D. R. J., Vandecasteele, B., Tack, F. M. G., & Verloo, M. G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution, 147(3), 615–625.

    Article  Google Scholar 

  33. EU. (1986) Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Available at http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31986L0278:EN:HTML

  34. EU. (2008). European Union risk assessment report. Zinc metal. Part I environment. From http://ecb.jrc.ec.europa.eu/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/zincmetalreport072.pdf

  35. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microoganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  36. Grosbois, C., Grosbois, C., Meybeck, A., Horowitz, A., Horowitz, A., & Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Science of the Total Environment, 356(1-3), 22.

    Article  CAS  Google Scholar 

  37. Grybos, M., Davranche, M., Gruau, G., & Petitjean, P. (2007). Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Journal of Colloid and Interface Science, 314(2), 490–501.

    Article  CAS  Google Scholar 

  38. Heemsbergen, D. A., McLaughlin, M. J., Whatmuff, M., Warne, M. S., Broos, K., Bell, M., et al. (2010). Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environmental Pollution, 158(5), 1907–1915 [Article].

    Article  CAS  Google Scholar 

  39. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22(2), 335–348.

    Article  CAS  Google Scholar 

  40. ILZSG. (2008). Lead and zinc statistics. Monthly Bulletin of the International Lead and Zinc Study Group 48(4).

    Google Scholar 

  41. Jacquat, O., Voegelin, A., & Kretzschmar, R. (2009). Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils. Geochimica et Cosmochimica Acta, 73(2), 348–363.

    Article  CAS  Google Scholar 

  42. Jacquat, O., Voegelin, A., & Kretzschmar, R. (2009). Soil properties controlling Zn speciation and fractionation in contaminated soils. Geochimica et Cosmochimica Acta, 73(18), 5256–5272.

    Article  CAS  Google Scholar 

  43. Jacquat, O., Voegelin, A., Villard, A., Marcus, M. A., & Kretzschmar, R. (2008). Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils. Geochimica et Cosmochimica Acta, 72(20), 5037–5054.

    Article  CAS  Google Scholar 

  44. Keller, A., von Steiger, B., van der Zee, S., & Schulin, R. (2001). A stochastic empirical model for regional heavy-metal balances in agroecosystems. Journal of Environmental Quality, 30(6), 1976–1989.

    Article  CAS  Google Scholar 

  45. Knotkova, D., & Porter, F. (1994). Longer life of galvanised steel in the atmosphere due to reduced sulphur dioxide pollution in Europe. Paper presented at the Seventeenth International Galvanizing Conference, Paris 1994, Paris.

    Google Scholar 

  46. Koopmans, G. F., Romkens, P., Song, J., Temminghoff, E. J. M., & Japenga, J. (2007). Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water, Air, and Soil Pollution, 181(1–4), 355–371.

    Article  CAS  Google Scholar 

  47. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  48. Lombi, E., Hamon, R. E., McGrath, S. P., & McLaughlin, M. J. (2003). Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979–984 [Article].

    Article  CAS  Google Scholar 

  49. Lombi, E., Zhao, F. J., Zhang, G. Y., Sun, B., Fitz, W., Zhang, H., et al. (2002). In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environmental Pollution, 118(3), 435–443.

    Article  CAS  Google Scholar 

  50. Macnicol, R. D., & Beckett, P. H. T. (1985). Critical tissue concentrations of potentially toxic elements. Plant and Soil, 85, 107–129.

    Article  CAS  Google Scholar 

  51. Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  52. Moolenaar, S. W., & Lexmond, T. M. (1988). Heavy-metal balances of agro-ecosystems in the Netherlands. Netherlands Journal of Agricultural Science, 46, 171–192.

    Google Scholar 

  53. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199.

    Article  CAS  Google Scholar 

  54. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

    Article  CAS  Google Scholar 

  55. Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace-metals. Nature, 338(6210), 47–49.

    Article  CAS  Google Scholar 

  56. Nriagu, J. O. (1996). A history of global metal pollution. Science, 272(5259), 223–224.

    Article  CAS  Google Scholar 

  57. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  58. Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390(1), 53–57 [Article].

    Article  CAS  Google Scholar 

  59. Olivie-Lauquet, G., Gruau, G., Dia, A., Riou, C., Jaffrezic, A., & Henin, O. (2001). Release of trace elements in wetlands: Role of seasonal variability. Water Research, 35(4), 943–952.

    Article  CAS  Google Scholar 

  60. Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L., & Cakmak, I. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1–2), 57–67.

    Article  CAS  Google Scholar 

  61. Provoost, J., Cornelis, C., & Swartjes, F. (2006). Comparison of soil clean-up standards for trace elements between countries: Why do they differ? Journal of Soils and Sediments, 6(3), 173–181 [Review].

    Article  CAS  Google Scholar 

  62. Renault, P., Cazevieille, P., Verdier, J., Lahlah, J., Clara, C., & Favre, F. (2009). Variations in the cation exchange capacity of a ferralsol supplied with vinasse, under changing aeration conditions Comparison between CEC measuring methods. Geoderma, 154(1–2), 101–110.

    Article  CAS  Google Scholar 

  63. Salminen, R. (Ed.). (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  64. Sillanpãã. (1982). Micronutrients and the nutrient status of soils. A global study (FAO Soils Bulletin, No. 48). Rome: FAO.

    Google Scholar 

  65. Smolders, E., Buekers, J., Oliver, I., & McLaughlin, M. J. (2004). Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environmental Toxicology and Chemistry, 23, 2633–2640.

    Article  CAS  Google Scholar 

  66. Smolders, E., Oorts, K., van Sprang, P., Schoeters, I., Janssen, C. R., McGrath, S. P., et al. (2009). Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environmental Toxicology and Chemistry, 28(8), 1633–1642.

    Article  CAS  Google Scholar 

  67. Speir, T. W., Kettles, H. A., Percival, H. J., & Parshotam, A. (1999). Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biology and Biochemistry, 31(14), 1953–1961.

    Article  CAS  Google Scholar 

  68. Stephan, C. H., Courchesne, F., Hendershot, W. H., McGrath, S. P., Chaudri, A. M., Sappin-Didier, V., et al. (2008). Speciation of zinc in contaminated soils. Environmental Pollution, 155(2), 208–216.

    Article  CAS  Google Scholar 

  69. Stevens, P. D., Mclaughlin, M. J., & Heinrich, R. (2003). Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity. Environmental Toxicology and Chemistry, 22(12), 3017–3024.

    Article  CAS  Google Scholar 

  70. US-EPA. (1993). 503, rule 40 CFR. http://water.epa.gov/polwaste/wastewater/treatment/biosolids/upload/2002_06_28_mtb_biosolids_sludge.pdf

  71. US-EPA. (2005). Ecological soil screening levels. Available at http://www.epa.gov/ecotox/ecossl/

  72. Van Damme, A., Degryse, F., Smolders, E., Sarret, G., Dewit, J., Swennen, R., et al. (2010). Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 74(13), 3707–3720.

    Article  Google Scholar 

  73. Van Laer, L., Degryse, F., Leynen, K., & Smolders, E. (2010). Mobilization of Zn upon waterlogging riparian Spodosols is related to reductive dissolution of Fe minerals. European Journal of Soil Science. doi:10.1111/j.1365-2389.2010.01308.x.

  74. Voegelin, A., Tokpa, G., Jacquat, O., Barmettler, K., & Kretzschmar, R. (2008). Zinc fractionation in contaminated soils by sequential and single extractions: Influence of soil properties and zinc content. Journal of Environmental Quality, 37(3), 1190–1200.

    Article  CAS  Google Scholar 

  75. Weber, F. A., Voegelin, A., & Kretzschmar, R. (2009). Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica Et Cosmochimica Acta, 73(19), 5513–5527.

    Article  CAS  Google Scholar 

  76. White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10(12), 586–593.

    Article  Google Scholar 

  77. WHO. (1996). Trace elements in human nutrition and health. Geneva: WHO.

    Google Scholar 

  78. WHO. (2004). Vitamin and mineral requirements in human nutrition (2nd ed.). Geneva: World Health Organization and Food and Agriculture Organization of the United Nations.

    Google Scholar 

  79. Wilcke, W. D. H. (1995). Schwermetalle in der Landwirtschaft. KTBL. Abeitspapier 217.

    Google Scholar 

  80. Zachara, J. M., Fredrickson, J. K., Smith, S. C., & Gassman, P. L. (2001). Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochimica et Cosmochimica Acta, 65(1), 75–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Smolders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mertens, J., Smolders, E. (2013). Zinc. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_17

Download citation

Publish with us

Policies and ethics