Envelope Load-Pull System

  • Fadhel M. Ghannouchi
  • Mohammad S. Hashmi
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 32)


Chapter 6 presents the fundamental concept of an active envelope load-pull (ELP) system. Subsequently, its characteristics, realization and design are presented and discussed. The calibration procedure of the ELP system is also described in detail. The harmonic ELP and its characteristics, which lead to some unique measurements and investigations, are presented.


Reflection Coefficient Directional Coupler Quadrature Modulator Quadrature Demodulator Passive Demodulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Focus Microwaves, Product catalogue, Accessed Oct. 2010
  2. 2.
    Maury Microwave Corporation, Product catalogue, Accessed Oct. 2010
  3. 3.
    Mesuro, Product catalogue, Accessed Oct. 2010
  4. 4.
    Real Time Passive Source/Load Pull Systems, PAF product, Accessed Oct. 2010
  5. 5.
    R. Negra, F.M. Ghannouchi, W. Bachtold, Study and design optimization of multiharmonic transmission-line load networks for class-E and class-F K-band mmic power amplifiers. IEEE Trans. Microw. Theory Tech. 55(6), 1390–1397 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    C. Roff, J. Benedikt, P.J. Tasker, Design approach for realization of very high efficiency power amplifiers, in IEEE MTT-S International Microwave Symposium Digest (June 2007), pp. 143–146 Google Scholar
  7. 7.
    M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, Electronic multi-harmonic load-pull system for experimentally driven power amplifier design optimization, in IEEE MTT-S International Microwave Symposium, Boston, USA, vols. 1–3 (June 2009), pp. 1549–1552 Google Scholar
  8. 8.
    M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, An accurate calibrate-able multi-harmonic active load-pull system based on the envelope load-pull concept. IEEE Trans. Microw. Theory Tech. 58(3), 656–664 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Hashmi, A.L. Clarke, J. Lees, M. Helaoui, P.J. Tasker, F.M. Ghannouchi, Agile harmonic envelope load-pull system enabling reliable and rapid device characterization. IOP Meas. Sci. Technol. 21(055109), 1–9 (2010) Google Scholar
  10. 10.
    S.C. Cripps, P.J. Tasker, A.L. Clarke, J. Lees, J. Benedikt, On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microw. Wirel. Compon. Lett. 19(10), 665–667 (2009) CrossRefGoogle Scholar
  11. 11.
    P. Wright, J. Lees, J. Benedikt, P.J. Tasker, S.C. Cripps, A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans. Microw. Theory Tech. 57(12), 3196–3204 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    F.M. Ghannouchi, M.S. Hashmi, Experimental investigation of the uncontrolled higher harmonic impedances effect on the performance of high-power microwave devices. Microw. Opt. Technol. Lett. 52(11), 2480–2482 (2010) CrossRefGoogle Scholar
  13. 13.
    H.M. Nemati, A.L. Clarke, S.C. Cripps, J. Benedikt, P.J. Tasker, C. Fager, J. Grahn, H. Zirath, Evaluation of a GaN HEMT transistor for load- and supply-modulation applications using intrinsic waveform measurements, in IEEE MTT-S International Microwave Symposium Digest (May 2010), pp. 509–512 Google Scholar
  14. 14.
    A.L. Clarke, M. Akmal, J. Lees, J. Benedikt, P.J. Tasker, Investigation and analysis into device optimization for attaining efficiencies in-excess of 90 % when accounting for higher harmonics, in IEEE MTT-S International Microwave Symposium Digest (May 2010), pp. 1114–1117 Google Scholar
  15. 15.
    R. Hajji, F.M. Ghannouchi, R.G. Bosisio, Large-signal microwave transistor modeling using multiharmonic load-pull measurements. Microw. Opt. Technol. Lett. 5(11), 580–585 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    H. Qi, J. Benedikt, P.J. Tasker, Nonlinear data utilization: from direct data lookup to behavioral modeling. IEEE Trans. Microw. Theory Tech. 57(6), (2009) Google Scholar
  17. 17.
    P. Berini, F.M. Ghannouchi, R.G. Bosisio, Active load characterization of a microwave transistor for oscillator design, in IEEE Instrumentation & Measurements Technology Conference, Ottawa, Canada (May 1997), pp. 668–673 Google Scholar
  18. 18.
    F.M. Ghannouchi, F. Beauregard, A.B. Kouki, Power added efficiency and gain improvement in MESFETs amplifiers using an active harmonic loading technique. Microw. Opt. Technol. Lett. 7(13), 625–627 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    G. Zhao, S. El-Rabaie, F.M. Ghannouchi, The effects of biasing and harmonic loading on MESFET tripler performance. Microw. Opt. Technol. Lett. 9(4), 189–194 (1995) CrossRefGoogle Scholar
  20. 20.
    E. Bergeault, O. Gibrat, S. Bensmida, B. Huyart, Multiharmonic source-pull/load-pull active setup based on six-port reflectometers: influence of the second harmonic source impedance on RF performances of power transistors. IEEE Trans. Microw. Theory Tech. 52(4), 1118–1124 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 1969–1974 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    J. Benedikt, R. Gaddi, P.J. Tasker, M. Goss, M. Zadeh, High power time domain measurement system with active harmonic load-pull for high efficiency base station amplifier design, in IEEE/MTT-S International Microwave Symposium, Boston, USA (June 2000), pp. 1459–1462 Google Scholar
  23. 23.
    T. Williams, J. Benedikt, P. Tasker, Experimental evaluation of an active envelope load-pull architecture for high speed device characterization, in IEEE/MTT-S International Microwave Symposium, vol. 3, Long Beach, USA (June 2005), pp. 1509–1512 Google Scholar
  24. 24.
    T. Williams, J. Benedikt, P.J. Tasker, Application of a novel active envelope load-pull architecture in large signal device characterization, in IEEE 35th European Microwave Conference Digest, Paris, France (Oct. 2005), 4 pp. Google Scholar
  25. 25.
    S.J. Hashim, M.S. Hashmi, T. Williams, S. Woodington, J. Benedikt, P.J. Tasker, Active envelope load-pull for wideband multi-tone stimulus incorporating delay compensation, in 38th IEEE European Microwave Conference, Amsterdam, The Netherlands (Oct. 2008), pp. 317–320 CrossRefGoogle Scholar
  26. 26.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8 Google Scholar
  27. 27.
    R. Ludwig, P. Bretchko, RF Circuit Design: Theory and Applications, 2nd edn. (Pearson, Upper Saddle River, 2008). ISBN 13-978-013-13555-07 Google Scholar
  28. 28.
    E. Kreyszig, Advanced Engineering Mathematics, 8th edn. (Wiley, New York, 2000). ISBN 13-9780471488859 Google Scholar
  29. 29.
    M. Sipila, K. Lehtinen, V. Porra, High-frequency periodic time-domain waveform measurement system. IEEE Trans. Microw. Theory Tech. 36(10), 1397–1405 (1988) ADSCrossRefGoogle Scholar
  30. 30.
    U. Lott, Measurement of magnitude and phase of harmonics generated in nonlinear microwave two-ports. IEEE Trans. Microw. Theory Tech. 37(10), 1506–1511 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    F. van Raay, G. Kompa, A new on-wafer large-signal waveform measurement system with 40 GHz harmonic bandwidth, in IEEE MTT-S International Microwave Symposium Digest, vol. 3 (June 1992), pp. 1435–1438 Google Scholar
  32. 32.
    D. Barataud, C. Arnaud, B. Thibaud, M. Campovecchio, J.-M. Nebus, J.P. Villotte, Measurements of time-domain voltage/current waveforms at RF and microwave frequencies based on the use of a vector network analyzer for the characterization of nonlinear devices-application to high-efficiency power amplifiers and frequency-multipliers optimization. IEEE Trans. Instrum. Meas. 47(5), 1259–1264 (1998) CrossRefGoogle Scholar
  33. 33.
    D.J. Williams, P.J. Tasker, An automated active source and load-pull measurement system, in 6th IEEE High Frequency Student Colloquium Digest (Sep. 2001), pp. 7–12 Google Scholar
  34. 34.
    S. Bensmida, P. Poire, R. Negra, F.M. Ghannouchi, G. Brassard, New time-domain voltage and current waveform measurement setup for power amplifier characterization and optimization. IEEE Trans. Microw. Theory Tech. 56(1), 224–231 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    W.S. El-Deeb, M.S. Hashmi, S. Bensmida, N. Boulejfen, F.M. Ghannouchi, Thru-less calibration algorithm and measurement system for on-wafer large-signal characterization of microwave devices, in IET Microwaves, Antenna and Propagation (2010) Google Scholar
  36. 36.
    C. Roff, J. Graham, J. Sirois, B. Noori, A new technique for decreasing the characterization time of passive load-pull tuners to maximize measurement throughput, in 72nd Automatic Radio Frequency Techniques Group (ARFTG) Conference Digest, Portland, USA (Dec. 2008), pp. 92–96 Google Scholar
  37. 37.
    K. Ogata, Modern Control Engineering, 5th edn. (Prentice Hall, New York, 2009). ISBN 13-978-013-6156734 Google Scholar
  38. 38.
    A. Ferrero, V. Teppati, G.L. Madonna, U. Pisani, Overview of modern load-pull and other non-linear measurement systems, in Automatic RF Techniques Group Conference (ARFTG) Digest (June 2001), pp. 1–5 Google Scholar
  39. 39.
    M.S. Hashmi, Analysis, realization and evaluation of envelope load-pull system both for CW and multi-tone applications, PhD Thesis, Cardiff University, 2009 Google Scholar
  40. 40.
    J.D. Rhodes, Output universality in maximum efficiency linear power amplifiers. Int. J. Circuit Theory Appl. 31, 385–405 (2003) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Intelligent RF Radio LaboratoryUniversity of CalgaryCalgaryCanada

Personalised recommendations