Active Load-Pull Systems

Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 32)

Abstract

Chapter 3 describes active load-pull techniques, their design issues, and important related characteristics. The descriptions involve two aspects: the theoretical postulations of various active load-pull methods; and, then their respective designs and features, and associated practical issues normally encountered in their practical realizations. General problems encountered in active harmonic load-pull systems and their appropriate solutions are also presented in detail.

Keywords

Microwave Attenuation Coherence GaAs Yttrium 

References

  1. 1.
    J.-E. Muller, B. Gyselinckx, Comparison of active versus passive on-wafer load-pull characterization of microwave and MM-wave power devices, in IEEE MTT-S International Microwave Symposium Digest (June 1994), pp. 1077–1080 Google Scholar
  2. 2.
    Maury Microwave Corporation, Pulsed-bias pulsed-RF harmonic load-pull for gallium nitride (GaN) and wide band gap (WBG), Application Note: 5A-043, Nov. 2009 Google Scholar
  3. 3.
    C. Roff, J. Benedikt, P.J. Tasker, Design approach for realization of very high efficiency power amplifiers, in IEEE MTT-S International Microwave Symposium Digest (June 2007), pp. 143–146 Google Scholar
  4. 4.
    G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IEE Electron. Lett. 18(4), 178–180 (1982) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Takayama, A new load pull characterization method for microwave power transistors, in IEEE/MTT-S International Microwave Symposium, New Jersey, USA (June 1976), pp. 218–220 CrossRefGoogle Scholar
  6. 6.
    V. Teppati, A. Ferrero, U. Pisani, Recent advances in real-time load-pull systems. IEEE Trans. Instrum. Meas. 57, 11 (2008) CrossRefGoogle Scholar
  7. 7.
    M. Spirito, L.C.N. de Vreede, M. de Kok, M. Pelk, D. Hartskeerl, H.F.F. Jos, J.E. Mueller, J. Burghartz, A novel active harmonic load-pull setup for on-wafer device characterization, in IEEE/MTT-S International Microwave Symposium (June 1994), pp. 1217–1220 Google Scholar
  8. 8.
    J. Benedikt, R. Gaddi, P.J. Tasker, M. Goss, M. Zadeh, High power time domain measurement system with active harmonic load-pull for high efficiency base station amplifier design, in IEEE/MTT-S International Microwave Symposium. Boston, USA (2000), pp. 1459–1462 Google Scholar
  9. 9.
    D.D. Poulin, J.R. Mahon, J.-P. Lanterri, A high power on-wafer pulsed active load-pull system. IEEE Trans. Microw. Theory Tech. 40(12), 2412–2417 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    G.D. Vendelin, A.M. Pavio, U.L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques (Wiley, New York, 1990), p. 400 Google Scholar
  11. 11.
    V. Camarchia, V. Teppati, S. Corbellini, M. Pirola, Microwave measurements part II—non-linear measurements. IEEE Instrum. Meas. Mag. 10, 34–39 (2007) CrossRefGoogle Scholar
  12. 12.
    Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 2006 (1969–1974) Google Scholar
  13. 13.
    P. Colantonio, F. Giannini, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, C. Proietti, A C-band high efficiency second harmonic tuned power amplifier in GaN technology. IEEE Trans. Microw. Theory Tech. 54(6), 2713–2722 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    M. Helaoui, F.M. Ghannouchi, Optimizing losses in distributed multi-harmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80 % power-added efficiency. IEEE Trans. Microw. Theory Tech. 57(2), 314–322 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    F.M. Ghannouchi, M.S. Hashmi, Experimental investigation of the uncontrolled higher harmonic impedances effect on the performance of high-power microwave devices. Microw. Opt. Technol. Lett. 52(11), 2480–2482 (2010) CrossRefGoogle Scholar
  16. 16.
    A. Ferrero, Active load or source impedance synthesis apparatus for measurement test set of microwave components and systems, U.S. Patent 6 509 743, Jan. 21, 2003 Google Scholar
  17. 17.
    V. Teppati, A. Ferrero, A new class of non-uniform, broadband, nonsymmetrical rectangular coaxial-to-microstrip directional couplers for high power applications. IEEE Microw. Wirel. Compon. Lett. 13(4), 152–154 (2003) CrossRefGoogle Scholar
  18. 18.
    S. Dudkiewics, R. Meierer, Cascading tuners for high-VSWR and harmonic load-pull, Maury Microwave Corporation, Application Note: 5C-081, Jan 2009 Google Scholar
  19. 19.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8 Google Scholar
  20. 20.
    P. Bouysse, J.M. Nebus, J.M. Coupat, J.P. Villotte, A novel, accurate load-pull setup allowing the characterisation of highly mismatched power transistors. IEEE Trans. Microw. Theory Tech. 42(2), 327–332 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    J. Verspecht, F. Verbeyst, M.V. Bossche, Network analysis beyond S-parameters: characterizing and modeling component behavior under modulated large-signal operating conditions, in 56th ARFTG Conference Digest (Nov. 2000), pp. 1–4 CrossRefGoogle Scholar
  22. 22.
    J. Verspecht, Large-signal network analysis. IEEE Microw. Mag. 6(4), 82–92 (2005) CrossRefGoogle Scholar
  23. 23.
    K. Rawat, F.M. Ghannouchi, A design methodology for miniaturized power dividers using periodically loaded slow wave structure with dual-band applications. IEEE Trans. Microw. Theory Tech. 57(12), 3380–3388 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    F. Blache, J.M. Nebus, P. Bouysse, J.-P. Villotte, A novel computerized multiharmonic active load-pull system for the optimization of high efficiency operating classes in power transistors, in IEEE/MTT-S International Microwave Symposium, USA (1995), pp. 1037–1040 Google Scholar
  25. 25.
    J.-M. Nebus, P. Bouysse, J.-P. Villotte, J. Obregon, Improvement of active load-pull technique for the optimization of high power communication SSPAs. Int. J. Microw. Millimeter-wave Computer-Aided Eng. 5(3), 149–160 (1995) CrossRefGoogle Scholar
  26. 26.
    J.-M. Nebus, P. Bouysse, J.M. Coupat, J.-P. Villotte, An active load-pull setup for the large signal characterization of highly mismatched microwave power transistors, in IEEE Instrumentation and Measurement Technology Conference, Irvine, USA (1993), pp. 2–5 Google Scholar
  27. 27.
    F.V. Raay, G. Kompa, Waveform measurements—the load-pull concept, in 55th ARFTG Conference, Boston, USA (2000), pp. 1–8 CrossRefGoogle Scholar
  28. 28.
    R.S. Saini, S. Woodington, J. Lees, J. Benedikt, P.J. Tasker, An intelligence driven active load-pull system, in 75th ARFTG Microwave Measurement Conference, Anaheim, USA (2010), pp. 1–4 CrossRefGoogle Scholar
  29. 29.
    S.C. Chapra, Numerical Methods for Engineers, 6th edn. (McGraw Hill, New York, 2009) Google Scholar
  30. 30.
    D.J. Williams, P.J. Tasker, An automated active source and load pull measurement system, in Proceedings of 6th IEEE High Frequency Postgraduate Colloquium, Cardiff, UK (2001), pp. 7–12 CrossRefGoogle Scholar
  31. 31.
    J. Verspecht, D.E. Root, Poly-harmonic distortion modeling. IEEE Microw. Mag. 7(3), 44–57 (2006) CrossRefGoogle Scholar
  32. 32.
    J. Horn, D. Gunyan, L. Betts, J. Verspecht, D.E. Root, Measurement-based large-signal simulation of active components from automated nonlinear vector network analyzer data via X-parameters, in IEEE International Conference on Microwaves, Communications, Antenna and Electronic Systems (May 2008), pp. 1–6 CrossRefGoogle Scholar
  33. 33.
    S. Woodington, T. Williams, H. Qi, D. Williams, L. Pattison, A. Patterson, J. Lees, J. Benedikt, P.J. Tasker, A novel measurement based method enabling rapid extraction of a RF waveform look-up table based behavioral model, in IEEE/MTT-S International Microwave Symposium, Boston, USA (June 2008), pp. 1453–1456 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Intelligent RF Radio LaboratoryUniversity of CalgaryCalgaryCanada

Personalised recommendations