Advertisement

Passive Load-Pull Systems

  • Fadhel M. Ghannouchi
  • Mohammad S. Hashmi
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 32)

Abstract

Chapter 2 provides details of passive load-pull systems and impedance tuning and synthesis approaches. Primarily two types of passive tuners—the electromechanical tuner (EMT) and the electronic tuner (ETS)—are employed in load-pull systems. This chapter presents a thorough discussion on the theory and concepts of both these tuners and provides in-depth knowledge on these tuners, so that the readers can select the best cost-effective solutions for their fundamental and harmonic load-pull applications. In the second part of this chapter, calibration techniques to remove errors arising from mismatches, dispersions and imperfections in the cables and system components are provided, as well as the required algorithms of calibration.

Keywords

Reflection Coefficient Directional Coupler Reference Plane Harmonic Frequency Vector Network Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Cusack, S.M. Perlow, B.S. Perlman, Automatic load contour mapping for microwave power transistors. IEEE Trans. Microw. Theory Tech. 22, 1146–1152 (1974) ADSCrossRefGoogle Scholar
  2. 2.
    F. Secchi, R. Paglione, B. Perlman, J. Brown, A computer controlled microwave tuner for automated load pull. RCA Rev. 44(4), 566–583 (1983) ADSGoogle Scholar
  3. 3.
    Focus Microwave, Mechanical vibrations of CCMT tuners used in on-wafer load-pull testing, Application Note AN-46, Oct. 2001 Google Scholar
  4. 4.
    J. Sevic, Introduction to tuner-based measurement and characterization, Technical Note, Maury Microwave Corporation, 5C-054 Google Scholar
  5. 5.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8 Google Scholar
  6. 6.
    Microlab, Mechanical tuners, Application Note, Oct. 2000 Google Scholar
  7. 7.
    R. Tuijtelaars, Overview of device noise parameter measurement system, in VDE/ITG-23.10.01 (2001), pp. 1–5 Google Scholar
  8. 8.
    Maury Microwave Corporation, Device characterization with harmonic load and source pull, Application Note: 5C-044, Dec. 2000 Google Scholar
  9. 9.
    Focus Microwave, Load pull measurements on transistors with harmonic impedance control, Technical Note, Aug. 1999 Google Scholar
  10. 10.
    B.W. Leake, A programmable load for power and noise characterization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Dallas, USA (June 1982), pp. 348–350 Google Scholar
  11. 11.
    Maury Microwave Corporation, LP series electronic tuner system, Technical Data, 4T-081, 2002 Google Scholar
  12. 12.
    M.S. Hashmi, F.M. Ghannouchi, P.J. Tasker, K. Rawat, Highly reflective load-pull. IEEE Microw. Mag. 11(4), 96–107 (2011) CrossRefGoogle Scholar
  13. 13.
    Focus Microwave, Computer controlled microwave tuner—CCMT, Product Note 41, Jan. 1998 Google Scholar
  14. 14.
    Maury Microwave Corporation, Slide screw tuners, Technical Data, 2G-035A, Feb. 1998 Google Scholar
  15. 15.
    Focus Microwaves, Algorithms for automatic high precision residual tuning to 50 Ω using programmable tuners, Application Note 45, May 2001 Google Scholar
  16. 16.
    Focus Microwave, Electronic tuners (ETS) and electromechanical tuners (EMT)—a critical comparison, Technical Note, Aug. 1998 Google Scholar
  17. 17.
    Focus Microwave, Comparing harmonic load-pull techniques with regards to power-added efficiency (PAE), Application Note 58, May 2007 Google Scholar
  18. 18.
    Maury Microwave Corporatio, Cascading tuners for high-VSWR and harmonic applications, Application Note 5C-081, Jan. 2009 Google Scholar
  19. 19.
    F. Deshours, E. Bergeault, F. Blache, J.-P. Villotte, B. Villeforceix, Experimental comparison of load-pull measurement systems for nonlinear power transistor characterization. IEEE Trans. Instrum. Meas. 57(11), 1251–1255 (1997) CrossRefGoogle Scholar
  20. 20.
    A. Ferrero, V. Teppati, Experimental comparison of active and passive load-pull measurement technologies, in 30th European Microwave Conference Proceedings, Paris, France (Oct. 2000), pp. 1–4 Google Scholar
  21. 21.
    C. Arnaud, J.L. Carbonero, J.M. Nebus, J.P. Teyssier, Comparison of active and passive load-pull test benches, in 57th ARFTG Conference, vol. 39 (May 2001), pp. 1–4 CrossRefGoogle Scholar
  22. 22.
    M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, An accurate calibrate-able multiharmonic active load-pull system based on the envelope load-pull concept. IEEE Trans. Microw. Theory Tech. 58(3), 656–664 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    W.S. El-Deeb, N. Boulejfen, F.M. Ghannouchi, A multiport measurement system for complex distortion measurements of nonlinear microwave systems. IEEE Trans. Instrum. Meas. 59(5), 1406–1413 (2010) CrossRefGoogle Scholar
  24. 24.
    D. Barataud, F. Blache, A. Mallet, P. Bouysse, J.-M. Nebus, J. Villotte, J. Obregon, J. Verspecht, P. Auxemery, Measurement and control of current/voltage waveforms of microwave transistors using a harmonic load-pull system for the optimum design of high efficiency power amplifiers. IEEE Trans. Instrum. Meas. 48(4), 835–842 (1999) CrossRefGoogle Scholar
  25. 25.
    J.E. Mueller, B. Gyselinckx, Comparison of active versus passive on-wafer load-pull characterization of microwave MMwave power devices, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, San Diego, USA (June 1994), pp. 1077–1080 Google Scholar
  26. 26.
    R.S. Tucker, P.D. Bradley, Computer-aided error correction of large-signal load-pull measurements. IEEE Trans. Microw. Theory Tech. 32(3), 296–300 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    P.D. Bradley, R.S. Tucker, Computer-corrected load-pull characterization of power MESFETs, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA (June 1983), pp. 224–226 Google Scholar
  28. 28.
    C. Tsironis, Adaptable pre-matched tuner system and method, US Patent No. 6674293 Google Scholar
  29. 29.
    G.R. Simpson, Impedance tuner systems and probes, US Patent No. 7589601 Google Scholar
  30. 30.
    J. Sirois, B. Noori, Tuning range analysis of load-pull measurement systems and impedance transforming networks, in 69th ARFTG Conference, Honolulu, USA (June 2007), pp. 1–5 CrossRefGoogle Scholar
  31. 31.
    C. Roff, J. Graham, J. Sirois, B. Noori, A new technique for decreasing the characterization time of passive load-pull tuners to maximize measurement throughput, in 72nd ARFTG Conference, Portland, USA (Dec. 2008), pp. 92–96 Google Scholar
  32. 32.
    P. Hart, J. Wood, B. Noori, P. Aaen, Improving loadpull measurement time by intelligent measurement interpolation and surface modeling techniques, in 67th ARFTG Conference, San Francisco, USA (June 2006), pp. 69–72 CrossRefGoogle Scholar
  33. 33.
    R.B. Stancliff, D.B. Poulin, Harmonic load-pull, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Florida, USA (Apr. 1979), pp. 185–187 Google Scholar
  34. 34.
    E.W. Strid, Measurement of losses in noise-matching networks. IEEE Trans. Microw. Theory Tech. 29(3), 247–252 (1981) ADSCrossRefGoogle Scholar
  35. 35.
    G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IEE Electron. Lett. 18(4), 178–180 (1982) ADSCrossRefGoogle Scholar
  36. 36.
    Y. Takayama, A new load pull characterization method for microwave power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, New Jersey, USA (June 1976), pp. 218–220 Google Scholar
  37. 37.
    R.A. Hackborn, An automatic network analyzer system. Microw. J. May, 45–52 (1968) Google Scholar
  38. 38.
    W.S. El-Deeb, M.S. Hashmi, S. Bensmida, N. Boulejfen, F.M. Ghannouchi, Thru-less calibration algorithm and measurement system for on-wafer large-signal characterization of microwave devices, IET J. Microw. Antenna Propag. 4(11), 1773–1781 (2010) CrossRefGoogle Scholar
  39. 39.
    E.F. DaSilva, M.K. McPhun, Calibration technique for one-port measurements. Microw. J. June, 97–100 (1978) Google Scholar
  40. 40.
    J.R. Souza, E.C. Talboys, S-parameter characterization of coaxial to microstrip transition. IEE Proc. 129(Part H), 37–40 (1982) Google Scholar
  41. 41.
    M.S. Hashmi, A.L. Clarke, J. Lees, M. Helaoui, P.J. Tasker, F.M. Ghannouchi, Agile harmonic envelope load-pull system enabling reliable and rapid device characterization. IOP J. Meas. Sci. Technol. 21(055109), 1–9 (2010) Google Scholar
  42. 42.
    M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, Electronic multi-harmonic load-pull system for experimentally driven power amplifier design optimization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA, vols. 1–3 (June 2009), pp. 1549–1552 Google Scholar
  43. 43.
    F. Blache, J.-M. Nebus, P. Bouysse, L. Jallet, A novel computerized multiharmonic active load-pull system for the optimization of high-efficiency operating classes in power transistor, in IEEE International Microwave Symposium Digest, Orlando, USA (June 1995), pp. 1037–1040 Google Scholar
  44. 44.
    A. Grebennikov, N.O. Sokal, Switch Mode RF Power Amplifiers (Elsevier, Oxford, 2007) Google Scholar
  45. 45.
    F.M. Ghannouchi, F. Beauregard, A.B. Kouki, Power added efficiency and gain improvement in MESFETs amplifiers using an active harmonic loading technique. Microw. Opt. Technol. Lett. 7(13), 625–627 (1994) ADSCrossRefGoogle Scholar
  46. 46.
    R. Hajji, F.M. Ghannouchi, R.G. Bosisio, Large-signal microwave transistor modeling using multiharmonic load-pull measurements. Microw. Opt. Technol. Lett. 5(11), 580–585 (1992) ADSCrossRefGoogle Scholar
  47. 47.
    F.M. Ghannouchi, R. Larose, R.G. Bosisio, A new multiharmonic loading method for large-signal microwave and millimeter-wave transistor characterization. IEEE Trans. Microw. Theory Tech. 39(6), 986–992 (1991) ADSCrossRefGoogle Scholar
  48. 48.
    Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 1969–1974 (2006) ADSCrossRefGoogle Scholar
  49. 49.
    F.M. Ghannouchi, M.S. Hashmi, S. Bensmida, M. Helaoui, Enhanced loop passive source- and load-pull architecture for high reflection factor synthesis. IEEE Trans. Microw. Theory Tech. 58(11), 2952–2959 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Intelligent RF Radio LaboratoryUniversity of CalgaryCalgaryCanada

Personalised recommendations