Fundamentals

Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 32)

Abstract

Chapter 1 presents the fundamentals of three aspects, namely the modeling of radio frequency (RF) power amplifiers, the approaches adopted for the optimal design of these amplifiers, and load-pull measurement systems. A brief survey of important load-pull features is also included in this chapter.

Keywords

Microwave Active Element 

References

  1. 1.
    H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23(II), 1370–1392 (1935) Google Scholar
  2. 2.
    W.H. Doherty, A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng. 24, 1163–1182 (1936) Google Scholar
  3. 3.
    L. Kahn, Single sideband transmission by envelope elimination and restoration. Proc. Inst. Radio Eng. 40, 803–806 (1952) Google Scholar
  4. 4.
    D.C. Cox, Linear amplification with nonlinear components, IEEE Trans. Commun. 22, 1942–1945 (1974) CrossRefGoogle Scholar
  5. 5.
    F.H. Raab, Efficiency of Doherty RF power amplifier system. IEEE Trans. Broadcast. BC-33(3), 77–83 (1983) CrossRefGoogle Scholar
  6. 6.
    S. Bousnina, F.M. Ghannouchi, Analysis and experimental study of an L-band new topology Doherty amplifier. in 2001 IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Phoenix, USA, vol. 2 (May 2001), pp. 935–938 Google Scholar
  7. 7.
    B. Kim, J. Kim, I. Kim, J. Cha, The Doherty amplifier. IEEE Microw. Mag. 7(5), 42–50 (2006) CrossRefGoogle Scholar
  8. 8.
    M. Helaoui, F.M. Ghannouchi, Linearization of power amplifiers using the reverse Mm-linc technique. IEEE Trans. Circuits Syst. II, Express Briefs 57(1), 6–10 (2010) CrossRefGoogle Scholar
  9. 9.
    S.C. Jung, O. Hammi, F.M. Ghannouchi, Design optimization and DPD linearization of GaN based unsymmetrical Doherty power amplifiers for 3G multi-carrier applications. IEEE Trans. Microw. Theory Tech. 57(9), 2105–2113 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    R. Darraji, F.M. Ghannouchi, O. Hammi, A dual-input digitally driven Doherty amplifier architecture for performance enhancement of Doherty transmitters. IEEE Trans. Microw. Theory Tech. 59(5), 1284–1293 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Maas, Nonlinear Microwave and RF Circuits, 2nd edn. (Artech House, Norwood, 2003) Google Scholar
  12. 12.
    J. Wood, D.E. Root (eds.), Fundamentals of Nonlinear Behavioural Modelling for RF and Microwave Design (Artech House, Norwood, 2005) Google Scholar
  13. 13.
    D.E. Root, J. Verspecht, D. Sharritt, J. Wood, A. Cognata, Broad-band poly-harmonic distortion behavioral models from fast automated simulations and large-signal vectorial network measurements. IEEE Trans. Microw. Theory Tech. 53(11), 3656–3664 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    J. Verspecht, D.E. Root, Poly-harmonic distortion modeling. IEEE Microw. Mag. 7(3), 44–57 (2006) CrossRefGoogle Scholar
  15. 15.
    J. Verspecht, M. Vanden Bossche, F. Verbeyst, Characterizing components under large signal excitation: defining sensible ‘large signal S-parameters, in 49th IEEE ARFTG Conference, Denver, USA (June 1997), pp. 109–117 Google Scholar
  16. 16.
    S.C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House, Norwood, 2006) Google Scholar
  17. 17.
    R. Gilmore, L. Besser, Practical RF Circuit Design for Modern Wireless Systems, vol. II (Artech House, Norwood, 2003) Google Scholar
  18. 18.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8 Google Scholar
  19. 19.
    G. Gonzalez, Microwave Amplifier Design, 2nd edn. (Prentice Hall, New York, 1996) Google Scholar
  20. 20.
    L.J. Kushner, Output performance of idealized microwave power amplifiers. Microw. J. 32(10), 103–116 (1989) ADSGoogle Scholar
  21. 21.
    P. Colantonio, J.A. Garcia, F. Giannini, E. Limiti, E. Malaver, J.C. Pedro, High linearity and efficiency microwave PAs, in European Gallium Arsenide and Other Semiconductor Application Symposium (2004), pp. 183–186 Google Scholar
  22. 22.
    F.H. Raab, Class E, class C, and class F power amplifiers based upon a finite number of harmonics. IEEE Trans. Microw. Theory Tech. 49(8), 1462–1468 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Jeong, H.H. Seong, J.H. Yi, G.H. Cho, A class D switching power amplifier with high efficiency and wide bandwidth by dual feedback loops, in International Conference on Consumer Electronics, Rosemont, USA (June 1995), pp. 428–429 Google Scholar
  24. 24.
    J. Staudinger, Multiharmonic load termination effects on GaAs power amplifiers. Microw. J., 60–77 (1996) Google Scholar
  25. 25.
    F.H. Raab, Maximum efficiency and output of class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 49(6), 1162–1166 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    H. Kim, G. Choi, J. Choi, A high efficiency inverse class-F power amplifier using GaN HEMT. Microw. Opt. Technol. Lett. 50(9), 2420–2422 (2008) MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Ramadan, T. Reveyrand, A. Martin, J.-M. Nebus, P. Bouysse, L. Lapierre, J.-F. Villemazet, S. Forestier, Two-stage GaN HEMT amplifier with gate-source voltage shaping for efficiency versus bandwidth enhancements. IEEE Trans. Microw. Theory Tech. 59(3), 699–706 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Advanced Design System (ADS), Version 2009, Agilent Technologies: http://www.agilent.com
  29. 29.
    Microwave Wave Office (MWO), Version 2010, AWR Corp: http://www.awrcorp.com
  30. 30.
    Y. Tsividis, Operation and Modeling of the MOS Transistor (McGraw-Hill, New York, 1987) Google Scholar
  31. 31.
    C.M. Snowden, Nonlinear modelling of power FETs and HBTs, in 3rd International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, Duisberg, Germany (Oct. 1994), pp. 11–25 CrossRefGoogle Scholar
  32. 32.
    J. Verspecht, P. Van Esch, Accurately characterizing hard nonlinear behavior of microwave components with the nonlinear network measurement system: introducing ‘nonlinear scattering functions’, in 5th International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, Duisberg, Germany (Oct. 1998), pp. 17–26 Google Scholar
  33. 33.
    D. Schreurs, J. Verspecht, S. Vandenberghe, G. Carchon, K. van der Zanden, B. Nauwelaers, Easy and accurate empirical transistor model parameter estimation from vectorial large-signal measurements, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Anaheim, USA (June 1999), pp. 753–756 Google Scholar
  34. 34.
    A. Issaoun, R. Barrak, A.B. Kouki, F.M. Ghannouchi, C. Akyel, Enhanced empirical large-signal model for HBTs with performance comparable with physics-based models. IEE Proc. Sci. Meas. Technol. 151(3), 142–150 (2004) CrossRefGoogle Scholar
  35. 35.
    M. Prigent, J.C. Nallatamby, M. Camiade, J.M. Nebur, E. Ngoya, R. Quere, J. Obregon, Comprehensive approach to the nonlinear design and modelling of microwave circuits, in IEEE Signals, Systems, and Electronics Conference, Pisa, Italy (Oct. 1998), pp. 450–455 Google Scholar
  36. 36.
    H. Qi, J. Benedikt, P. Tasker, A novel approach for effective import of nonlinear device characteristics into CAD for large signal power amplifier design, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, San Francisco, USA (June 2006), pp. 477–480 Google Scholar
  37. 37.
    J.G. Lecky, A.D. Patterson, J.A.C. Stewart, A vector corrected waveform and load line measurement system for large signal transistor characterization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Orlando, USA (May 1995), pp. 1243–1246 Google Scholar
  38. 38.
    D.J. Williams, P.J. Tasker, An automated active source- and load-pull measurement system, in 6th IEEE High Frequency Student Colloquium, Cardiff, UK (Sept. 2001), pp. 7–12 Google Scholar
  39. 39.
    S. Bensmida, P. Poire, F.M. Ghannouchi, Source-pull/load-pull measurement system based on RF and baseband coherent active branches using broadband six-port reflectometers, in 37th European Microwave Conference, Munich, Germany (Oct. 2007), pp. 953–956 Google Scholar
  40. 40.
    W.S. El-Deeb, M.S. Hashmi, N. Boulejfen, F.M. Ghannouchi, Small-signal, complex distortion and waveform measurement system for multiport microwave devices. IEEE Instrum. Meas. Mag. 14(3), 28–33 (2011) CrossRefGoogle Scholar
  41. 41.
    J. Benedikt, R. Gaddi, P.J. Tasker, M. Goss, High-power time-domain measurement system with active harmonic load-pull for high-efficiency base-station amplifier design. IEEE Trans. Microw. Theory Tech. 48(12), 2617–2624 (2000) ADSCrossRefGoogle Scholar
  42. 42.
    D. Barataud, C. Arnaud, B. Thibaud, M. Campovecchio, J.-M. Nebus, J.P. Villotte, Measurements of time-domain voltage/current waveforms at RF and microwave frequencies based on the use of a vector network analyzer for the characterization of nonlinear devices – application to high-efficiency power amplifiers and frequency multipliers. IEEE Trans. Instrum. Meas. 47(5), 1259–1264 (1998) CrossRefGoogle Scholar
  43. 43.
    F. van Raay, G. Kompa, A new on-wafer large signal waveform measurement system with 40 GHz harmonic bandwidth, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Albuquerque, USA (June 1992), pp. 1435–1438 Google Scholar
  44. 44.
    H.M. Nemati, A.L. Clarke, S.C. Cripps, J. Benedikt, P.J. Tasker, C. Fager, J. Grahn, H. Zirath, Evaluation of a GaN HEMT transistor for load- and supply-modulation applications using intrinsic waveform measurements, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Anaheim, USA (May 2010), pp. 509–512 Google Scholar
  45. 45.
    Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 1969–1974 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    M.S. Hashmi, F.M. Ghannouchi, P.J. Tasker, K. Rawat, Highly reflective load-pull. IEEE Microw. Mag. 11(4), 96–107 (2011) CrossRefGoogle Scholar
  47. 47.
    Maury Microwave Corporation, Device characterization with harmonic load and source pull, Application Note: 5C-044, Dec. 2000 Google Scholar
  48. 48.
    Focus Microwave, Load pull measurements on transistors with harmonic impedance control, Technical Note, Aug. 1999 Google Scholar
  49. 49.
    G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IEE Electron. Lett. 18(4), 178–180 (1982) ADSCrossRefGoogle Scholar
  50. 50.
    Y. Takayama, A new load pull characterization method for microwave power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, New Jersey, USA (June 1976), pp. 218–220 Google Scholar
  51. 51.
    F.M. Ghannouchi, F. Beauregard, A.B. Kouki, Power added efficiency and gain improvement in MESFETs amplifiers using an active harmonic loading technique. Microw. Opt. Technol. Lett. 7(13), 625–627 (1994) ADSCrossRefGoogle Scholar
  52. 52.
    F.M. Ghannouchi, M.S. Hashmi, S. Bensmida, M. Helaoui, Enhanced loop passive source- and load-pull architecture for high reflection factor synthesis. IEEE Trans. Microw. Theory Tech. 58(11), 2952–2959 (2010) CrossRefGoogle Scholar
  53. 53.
    B. Noori, P. Hart, J. Wood, P.H. Aaen, M. Guyonnet, M. Lefevre, J.A. Pla, J. Jones, Load-pull measurements using modulated signals, in 36th European Microwave Conference, Manchester, UK (Sept. 2006), pp. 1594–1597 Google Scholar
  54. 54.
    D.-L. Le, F.M. Ghannouchi, Multitone characterization and design of fet resistive mixers based on combined active source-pull/load-pull techniques. IEEE Trans. Microw. Theory Tech. 46(9), 1201–1208 (1998) ADSCrossRefGoogle Scholar
  55. 55.
    F.M. Ghannouchi, Device line simulation of high-speed oscillators using harmonic-balance techniques. Arab. J. Sci. Eng. 19(4B), 805–812 (1994) Google Scholar
  56. 56.
    P. Berini, M. Desgagne, F.M. Ghannouchi, R.G. Bosisio, An experimental study of the effects of harmonic loading on microwave mesfet oscillators and amplifiers. IEEE Trans. Microw. Theory Tech. 42(6), 943–950 (1994) ADSCrossRefGoogle Scholar
  57. 57.
    D.M. Snider, A theoretical analysis and experimental confirmation of the optimally loaded and overdriven RF power amplifier. IEEE Trans. Electron Devices 14(12), 851–857 (1967) CrossRefGoogle Scholar
  58. 58.
    J.D. Rhodes, Output universality in maximum efficiency linear power amplifiers. Int. J. Circuit Theory Appl. 31, 385–405 (2003) MATHCrossRefGoogle Scholar
  59. 59.
    F.H. Raab, Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech. 31(11), 2007–2012 (1997) ADSCrossRefGoogle Scholar
  60. 60.
    R. Negra, F.M. Ghannouchi, W. Bachtold, Analysis and evaluation of harmonic suppression of lumped-element networks suitable for high-frequency class-E operation condition approximation. IET Microw. Antennas Propag. 2(8), 794–800 (2008) CrossRefGoogle Scholar
  61. 61.
    M. Helaoui, F.M. Ghannouchi, Optimizing losses in distributed multiharmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80 % power-added efficiency. IEEE Trans. Microw. Theory Tech. 57(2), 314–322 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    F.M. Ghannouchi, M.S. Hashmi, Experimental investigation of the uncontrolled higher harmonic impedances effect on the performance of high-power microwave devices. Microw. Opt. Technol. Lett. 52(11), 2480–2482 (2010) CrossRefGoogle Scholar
  63. 63.
    G. Zhao, S. El-Rabaie, F.M. Ghannouchi, The effects of biasing and harmonic loading on MESFET tripler performance. Microw. Opt. Technol. Lett. 9(4), 189–194 (1995) CrossRefGoogle Scholar
  64. 64.
    F.M. Ghannouchi, F. Beauregard, A.B. Kouki, Power added efficiency and gain improvement in MESFETs amplifiers using an active harmonic loading technique. Microw. Opt. Technol. Lett. 7(13), 625–627 (1994) ADSCrossRefGoogle Scholar
  65. 65.
    P. Wright, J. Lees, J. Benedikt, P.J. Tasker, S.C. Cripps, A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans. Microw. Theory Tech. 57(12), 3196–3204 (2009) ADSCrossRefGoogle Scholar
  66. 66.
    M.S. Hashmi, A.L. Clarke, S.P. Woodington, J. Lees, J. Benedikt, P.J. Tasker, Electronic multi-harmonic load-pull system for experimentally driven power amplifier design optimization, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Boston, USA, vols. 1–3 (June 2009), pp. 1549–1552 Google Scholar
  67. 67.
    E. Bergeault, O. Gibrat, S. Bensmida, B. Huyart, Multiharmonic source-pull/load-pull active setup based on six-port reflectometers: influence of the second harmonic source impedance on RF performances of power transistors. IEEE Trans. Microw. Theory Tech. 52(4), 1118–1124 (2004) ADSCrossRefGoogle Scholar
  68. 68.
    G.R. Simpson, M. Vassar, Importance of 2nd harmonic tuning for power amplifier design, in 48th Automatic Radio Frequency Techniques Group Conference, Florida, USA (Dec. 1996), pp. 1–6 Google Scholar
  69. 69.
    P. Butterworth, S. Gao, S.F. Ooi, A. Sambell, High-efficiency class-F power amplifier with broadband performance. Microw. Opt. Technol. Lett. 44(3), 243–247 (2005) CrossRefGoogle Scholar
  70. 70.
    G. Collinson, C.W. Suckling, Effects of harmonic terminations on power and efficiency of GaAs HBT power amplifiers at 900 MHz, in IEE Colloquium on Solid-State Power Amplifiers (Dec. 1991), pp. 12/1–12/5 Google Scholar
  71. 71.
    Maury Microwave Corporation, LP series electronic tuner system, Technical Data, 4T-081, 2002 Google Scholar
  72. 72.
    Focus Microwave, Mechanical vibrations of CCMT tuners used in on-wafer load-pull testing, Application Note AN-46, Oct. 2001 Google Scholar
  73. 73.
    Focus Microwave, Comparing tuner repeatability, Application Note AN-49, March 2002 Google Scholar
  74. 74.
    Maury Microwave Corporation, Introduction to tuner-based measurement and characterization, Technical Data, 5C-054, Aug. 2004 Google Scholar
  75. 75.
    M.S. Hashmi, A.L. Clarke, S.P. Wooding, J. Lees, J. Benedikt, P.J. Tasker, An accurate calibrate-able multi-harmonic active load-pull system based on the envelope load-pull concept. IEEE Trans. Microw. Theory Tech. 58(3), 656–664 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    Z. Aboush, J. Lees, J. Benedikt, P. Tasker, Active harmonic load-pull system for characterizing highly mismatched high power transistors, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Long Beach, USA (June 2005), pp. 1311–1314 CrossRefGoogle Scholar
  77. 77.
    Focus Microwave, High resolution tuners eliminate load-pull performance errors, Application Note AN-15, Jan. 1995 Google Scholar
  78. 78.
    M. Salib, D. Dawson, H. Hahn, Load-line analysis in the frequency domain with distributed amplifier design examples, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, Palo Alto, USA (June 1987), pp. 575–578 Google Scholar
  79. 79.
    S. Kee, The class E/F family of harmonic-tuned switching power amplifiers, PhD Thesis, California Institute of Technology, 2002 Google Scholar
  80. 80.
    Anritsu, Intermodulation distortion measurements using the 37300 series vector network analyzer, Application Note-11410-00213, Sept. 2000 Google Scholar
  81. 81.
    R.H. Caverly, J.C.P. Jones, Contributions to adjacent channel power in microwave and wireless systems by PIN diodes, in IEEE Microwave Theory and Techniques Society’s International Microwave Symposium Digest, San Francisco, USA (June 2006), pp. 910–913 Google Scholar
  82. 82.
    3GPP Technical Specification 25141, Base Station Conformance Testing (FDD) Google Scholar
  83. 83.
    M.A.Y. Medina, RF power amplifiers for wireless communications, PhD Thesis, Katholieke Universiteit Leuven, 2008 Google Scholar
  84. 84.
    B. Ingruber, J. Baumgartner, D. Smely, M. Wachutka, G. Magerl, F.A. Petz, Rectangularly driven class-A harmonic-control amplifier. IEEE Trans. Microw. Theory Tech. 46(11), 1667–1672 (1998) ADSCrossRefGoogle Scholar
  85. 85.
    S. El-Hamamsy, Design of high efficiency RF class-D power amplifier. IEEE Trans. Power Electron. 9(3), 297–308 (1994) CrossRefGoogle Scholar
  86. 86.
    M.J. Chudobiak, The use of parasitic nonlinear capacitors in class-E amplifiers. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 14(12), 941–944 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Intelligent RF Radio LaboratoryUniversity of CalgaryCalgaryCanada

Personalised recommendations