Conclusions and Outlook

Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

The final Chap. 6 sums up the results of the book and presents an Outlook on various new directions for which the concepts developed in the book provide a basis. Examples that are addressed concern the presence of evaporation, films on finite or structured surfaces, metallic films, external fields on the films, but also polar gels which are model systems for the dynamics of cells on surfaces.

Keywords

Polymer Film Contact Line Metallic Film Hydrodynamic Theory Evaporation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Archer, A.J., Robbins, M.J., Thiele, U.: Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation. Phys. Rev. E 81, 021602 (2010) ADSCrossRefGoogle Scholar
  2. Atena, A., Khenner, M.: Thermocapillary effects in driven dewetting and self assembly of pulsed-laser-irradiated metallic films. Phys. Rev. B 80, 075402 (2009) ADSCrossRefGoogle Scholar
  3. Ausserré, D., Brochard-Wyart, F., de Gennes, P.G.: Dewetting of an incompressible, stratified fluid. C. R. Acad. Sci. Paris 320, 131–136 (1995) Google Scholar
  4. Bischof, J., Scherer, D., Herminghaus, S., Leiderer, P.: Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536–1539 (1996) ADSCrossRefGoogle Scholar
  5. Bonn, D., Eggers, J., Indekeu, J.O., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009) ADSCrossRefGoogle Scholar
  6. Brinkmann, M., Blossey, R.: Blobs, channels and “cigars”: morphologies of liquids at a step. Eur. Phys. J. E 14, 79–89 (2004) CrossRefGoogle Scholar
  7. Brochard, F., Redon, C., Rondelez, F.: Dewetting: the gravity controlled regime. C. R. Acad. Sci. Paris 306, 1143–1146 (1988) MathSciNetGoogle Scholar
  8. Brochard-Wyart, F., Martin, P., Redon, C.: Liquid/liquid dewetting. Langmuir 9, 3682–3690 (1993) CrossRefGoogle Scholar
  9. Brochard-Wyart, F., de Gennes, P.G.: Dewetting of a water film between a solid and a rubber. J. Phys., Condens. Matter 6, A9–A12 (1994b) ADSCrossRefGoogle Scholar
  10. Brochard-Wyart, F., Buguin, A.: Shape effects in inertial dewetting. C. R. Acad. Sci. Paris 327, 809–815 (1999) MATHGoogle Scholar
  11. Burelbach, J.P., Bankoff, S.G., Davis, S.H.: Nonlinear stability of evaporating/condensing films. J. Fluid Mech. 195, 463–494 (1988) ADSMATHCrossRefGoogle Scholar
  12. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009) ADSCrossRefGoogle Scholar
  13. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997) ADSCrossRefGoogle Scholar
  14. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000) ADSCrossRefGoogle Scholar
  15. de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985) ADSCrossRefGoogle Scholar
  16. de Gennes, P.G.: Dewetting between a porous solid and a rubber. C. R. Acad. Sci. Paris 318, 1033–1037 (1994) Google Scholar
  17. de Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Gouttes, Bulles, Perles et Ondes. Belin, Paris (2005) Google Scholar
  18. Dietzel, M., Troian, S.M.: Formation of nanopillar arrays in ultrathin viscous films: the critical role of thermocapillary stresses. Phys. Rev. Lett. 103, 074501 (2009) ADSCrossRefGoogle Scholar
  19. Fowlkes, J.D., Wu, Y., Rack, P.D.: Directed assembly of bimetallic nanoparticles by pulsed-laser-induced dewetting: a unique time and length scale regime. Appl. Mater. & Interfaces 2, 2153–2161 (2010) CrossRefGoogle Scholar
  20. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S.: Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916–919 (1998) ADSCrossRefGoogle Scholar
  21. Joanny, J.-F., Prost, J.: Active gels as a description of the actin-myosin cytoskeleton. HFSP J. 3, 94–104 (2009) CrossRefGoogle Scholar
  22. Kargupta, K., Konnur, R., Sharma, A.: Instability and pattern formation in thin liquid films on chemically heterogeneous substrates. Langmuir 16, 10243–10253 (2000) CrossRefGoogle Scholar
  23. Kargupta, K., Sharma, A.: Dewetting of thin films on periodic physically and chemically patterned surfaces. Langmuir 18, 1893–1903 (2002) CrossRefGoogle Scholar
  24. Kondic, L., Diez, J.A., Rack, P.D., Guan, Y., Fowlkes, J.D.: Nanoparticle assembly via the dewetting of patterned thin metal lines: understanding the instability mechanism. Phys. Rev. E 79, 026302 (2009) ADSCrossRefGoogle Scholar
  25. Kruse, K., Joanny, J.F., Jülicher, F., Prost, J., Sekimoto, K.: Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. 16, 5–16 (2005) Google Scholar
  26. Latterini, L., Blossey, R., Hofkens, J., Vanoppen, P., de Schryver, F.C., Rowan, A.E., Nolte, R.J.M.: Ring formation in evaporating porphyrin derivative solutions. Langmuir 15, 3582–3588 (1999) CrossRefGoogle Scholar
  27. Ledesma-Aguilar, R., Hernández-Machado, A., Pagonabarraga, I.: Dynamics of gravity driven three-dimensional thin films on hydrophilic and hydrophobic patterned substrates. Langmuir 26, 3292–3301 (2009) CrossRefGoogle Scholar
  28. Lin, Z., Kerle, T., Russell, T.P., Schäffer, E., Steiner, U.: Electric field induced dewetting at polymer/polymer interfaces. Macromolecules 35, 6255–6262 (2002) ADSCrossRefGoogle Scholar
  29. Martin, A., Buguin, A., Brochard-Wyart, F.: “Cerenkov” dewetting at soft interfaces. Europhys. Lett. 57, 604–610 (2002) ADSCrossRefGoogle Scholar
  30. Martin, P., Brochard-Wyart, F.: Dewetting at soft interfaces. Phys. Rev. Lett. 80, 3296–3299 (1998) ADSCrossRefGoogle Scholar
  31. Ohara, P.C., Heath, J.R., Gelbart, W.M.: Bildung von Submikrometer-grossen Partikelringen bem Verdunsten Nanopartikelhaltiger Lösungen. Angew. Chem. 109, 1120–1122 (1997) CrossRefGoogle Scholar
  32. Ohara, P.C., Gelbart, W.: Interplay between hole instability and nanoparticle array formation in ultrathin liquid films. Langmuir 14, 3418–3424 (1997) CrossRefGoogle Scholar
  33. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997) ADSCrossRefGoogle Scholar
  34. Parisse, F., Allain, C.: Shape changes of colloidal droplets during drying. J. Phys. II France 6, 1111–1119 (1996) CrossRefGoogle Scholar
  35. Samid-Merzel, N., Lipson, S.G., Tannhauser, D.S.: Pattern formation in drying water films. Phys. Rev. E 57, 2906–2913 (1998) ADSCrossRefGoogle Scholar
  36. Schäffer, E., Thurn-Albrecht, T., Russell, T.P.: Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000) ADSCrossRefGoogle Scholar
  37. Schäffer, E., Thurn-Albrecht, T., Russell, T.P., Steiner, U.: Electrohydrodynamic instabilities in polymer films. Europhys. Lett. 53, 518–524 (2001) ADSCrossRefGoogle Scholar
  38. Schäffer, E., Harkema, S., Roerdink, M., Blossey, R., Steiner, U.: Morphological instability of a confined polymer film in a thermal gradient. Macromolecules 36, 1645–1655 (2003) ADSCrossRefGoogle Scholar
  39. Schenning, A.P.H.J., Benneker, F.B.G., Geurts, H.P.M., Liu, X.Y., Nolte, R.J.M.: Porphyrin wheels. J. Am. Chem. Soc. 118, 8549–8552 (1996) CrossRefGoogle Scholar
  40. Thiele, U., Mertig, M., Pompe, W.: Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys. Rev. Lett. 80, 2869–2872 (1998) ADSCrossRefGoogle Scholar
  41. Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., Kalyanaraman, R.: Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiment. Phys. Rev. E 75, 235439 (2007) Google Scholar
  42. Trice, J., Favazza, C., Thomas, D., Garcia, H., Kalyanaraman, R., Sureshkumar, R.: Novel self-organization mechanism in ultrathin liquid films: theory and experiment. Phys. Rev. Lett. 101, 017802 (2008) ADSCrossRefGoogle Scholar
  43. Wu, Y., Fowlkes, J.D., Rack, P.D., Diez, J.A., Kondic, L.: On the breakup of patterned nanoscale copper rings into droplets via Pulsed-Laser-Induced Dewetting: competing liquid-phase instability and transport mechanisms. Langmuir 26, 11972–11979 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.CNRS USR 3078Institut de Recherche InterdisciplinaireVilleneuve d’Ascq CedexFrance

Personalised recommendations