Skip to main content

Viscoelastic Thin Films

  • Chapter
Thin Liquid Films

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1727 Accesses

Abstract

Surprisingly enough, the properties of thin polymer films can be covered by hydrodynamic equations originally devised for classical liquids, provided that surface slip is properly taken into account. This was the key insight of Chap. 4. However, this is of course not entirely correct—put simply, it depends on the chain length of the polymer. If the polymer properties are brought into play, the thin films display viscoelastic behaviour. Chapter 5 introduces the concepts needed to cover this case and explains how the thin film equations are modified in this case. Finally, the chapter addresses microscopic properties of thin films like the slip length and glassy behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the Jeffreys model is used in several parametrizations in the literature. Upon multiplying Eq. (5.20) with the elastic modulus G we can find the form \(G\widehat{\tau} + \eta_{1} \dot{\rule{0pt}{7.pt}\widehat{\tau}} = G\eta_{1} \dot{\rule{0pt}{7.pt}\widehat{\gamma}} + \eta_{0}\eta_{1}\ddot{\widehat{\gamma}} \) which is used by Vilmin and Raphaël (2006).

  2. 2.

    We omit the \(\widehat{\hphantom{a}}\)-symbol in the following to simplify notation.

  3. 3.

    One notes a difference of a factor of 1/2 between this equation and equation (5.9). This is convention-dependent. We use the convention used in Rauscher et al. (2005). In comparing both cases, it suffices to assume that the additional factor has been absorbed in the definition of the viscosity η, see Eq. (5.25) below.

References

  • Blossey, R., Münch, A., Rauscher, M., Wagner, B.: Slip vs. viscoelasticity in dewetting thin films. Eur. Phys. J. E 20, 267–272 (2006)

    Article  Google Scholar 

  • Blossey, R.: Thin film rupture and polymer flow. Phys. Chem. Chem. Phys. 10, 5177–5183 (2008)

    Article  Google Scholar 

  • Böhme, G.: Strömungsmechanik nichtnewtonscher Fluide. Teubner Verlag, Stuttgart (2000)

    Book  MATH  Google Scholar 

  • Brochard, F., de Gennes, P.-G.: Shear-dependent slippage at a polymer/solid interface. Langmuir 8, 3033–3037 (1992)

    Article  Google Scholar 

  • Byron Bird, R., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, 2nd edn. Wiley, New York (1987a)

    Google Scholar 

  • Byron Bird, R., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory, 2nd edn. Wiley, New York (1987b)

    Google Scholar 

  • Damman, P., Gabriele, S., Coppée, S., Descprez, S., Villers, D., Vilmin, T., Raphaël, E., Hamieh, M., Al Akhrass, S., Reiter, G.: Relaxation of residual stress and reentanglement of polymers in spin-coated films. Phys. Rev. Lett. 99, 036101 (2007)

    Article  ADS  Google Scholar 

  • de Gennes, P.G.: Glass transition in thin polymer films. Eur. Phys. J. E 2, 201–205 (2000)

    Article  Google Scholar 

  • Fakhraai, Z., Forrest, J.A.: Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008)

    Article  Google Scholar 

  • Gabriele, S., Damman, P., Sclavons, S., Desprez, S., Coppée, S., Reiter, G., Hamieh, M., Al Akhrass, S., Vilmin, T., Raphäel, E.: Viscoelastic dewetting of constrained polymer thin films. J. Polym. Sci. 44, 3022–3030 (2006a)

    Google Scholar 

  • Gabriele, S., Sclavons, S., Reiter, G., Damman, P.: Disentanglement time of polymers determines the onset of rim instabilities in dewetting. Phys. Rev. Lett. 96, 156105 (2006b)

    Article  ADS  Google Scholar 

  • Gutfreund, P., Bäumchen, O., van der Grinten, D., Fetzer, R., Maccarini, M., Jacobs, K., Zabel, H., Wolff, M.: Surface correlation affects liquid order and slip in a Newtonian liquid (2011). arXiv:1104.0868

  • Hamieh, M., Al Akhrass, S., Hamieh, T., Damman, P., Gabriele, S., Vilmin, T., Raphaël, E., Reiter, G.: Influence of substrate properties on the dewetting dynamics of viscoelastic polymer films. J. Adhes. 83, 367–381 (2007)

    Article  Google Scholar 

  • Herminghaus, S.: Polymer thin films and surfaces: possible effects of capillary waves. Eur. Phys. J. E 8, 237–243 (2002)

    Article  Google Scholar 

  • Herminghaus, S., Jacobs, K., Seemann, R.: Viscoelastic dynamics of polymer thin films. Eur. Phys. J. E 12, 101–110 (2003)

    Article  Google Scholar 

  • Kargupta, K., Sharma, A., Khanna, R.: Instability, dynamics and morphology of slipping thin films. Langmuir 20, 244–253 (2004)

    Article  Google Scholar 

  • Khayat, R.E.: Transient two-dimensional coating flow of a viscoelastic fluid film on a substrate of arbitrary shape. J. Non-Newton. Fluid Mech. 95, 199–233 (2001)

    Article  Google Scholar 

  • Léger, L., Hervet, H., Bureau, L.: Friction mechanisms at polymer-solid interfaces. C. R., Chim. 9, 80–89 (2006)

    Article  Google Scholar 

  • Migler, K.B., Hervet, H., Leger, L.: Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70, 287–290 (1993)

    Article  ADS  Google Scholar 

  • Münch, A., Wagner, B., Rauscher, M., Blossey, R.: A thin-film model for corotational Jeffreys fluids under strong slip. Eur. Phys. J. E 20, 365–368 (2006)

    Article  Google Scholar 

  • Rauscher, M., Münch, A., Wagner, B., Blossey, R.: A thin-film equation for viscoelastic liquids of Jeffreys type. Eur. Phys. J. E 17, 373–379 (2005)

    Article  Google Scholar 

  • Reiter, G.: Dewetting of highly elastic thin polymer films. Phys. Rev. Lett. 87, 186101 (2001)

    Article  ADS  Google Scholar 

  • Reiter, G., Hamieh, M., Damman, P., Sclavons, S., Gabriele, S., Vilmin, T., Raphaël, E.: Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 4, 754–758 (2005)

    Article  ADS  Google Scholar 

  • Reiter, G., Al Akhrass, S., Hamieh, M., Damman, P., Gabriele, S., Vilmin, T., Raphaël, E.: Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 166, 165–172 (2009)

    Article  Google Scholar 

  • Roth, C.B., Dutcher, J.R.: Glass transition and chain mobility in thin polymer films. J. Electroanal. Chem. 584, 13–22 (2005)

    Article  Google Scholar 

  • Vilmin, T., Raphaël, E.: Dewetting of thin viscoelastic polymer films on slippery substrates. Europhys. Lett. 72, 781–787 (2005)

    Article  ADS  Google Scholar 

  • Vilmin, T., Raphaël, E.: Dewetting of thin polymer films. Eur. Phys. J. E 21, 161–174 (2006)

    Article  Google Scholar 

  • Vilmin, T., Raphaël, E., Damman, P., Sclavons, S., Gabriele, S., Hamieh, M., Reiter, G.: The role of nonlinear friction in the dewetting of thin polymer films. Europhys. Lett. 73, 906–912 (2006)

    Article  ADS  Google Scholar 

  • Yang, Z., Fujii, Y., Lee, F.K., Lam, C.-H., Tsui, O.K.C.: Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010)

    Article  ADS  Google Scholar 

  • Zhang, Y.L., Matar, O.K., Craster, R.V.: Surfactant spreading on a thin weakly viscoelastic film. J. Non-Newton. Fluid Mech. 105, 53–78 (2002)

    Article  MATH  Google Scholar 

  • Ziebert, F., Raphaël, E.: Dewetting of thin polymer films: influence of interface evolution. Europhys. Lett. 86, 46001 (2009a)

    Article  ADS  Google Scholar 

  • Ziebert, F., Raphaël, E.: Dewetting dynamics of stressed viscoelastic thin polymer films. Phys. Rev. E 79, 031605 (2009b)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Blossey .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blossey, R. (2012). Viscoelastic Thin Films. In: Thin Liquid Films. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4455-4_5

Download citation

Publish with us

Policies and ethics