Skip to main content

Statistical Mechanics of Thin Films

  • Chapter
Thin Liquid Films

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1704 Accesses

Abstract

This chapter develops the concepts of statistical mechanics as relevant to studies of thin films. Starting out from the classic Young-Dupré equation, the theory of wetting and dewetting transitions is developed on the basis of effective interface Hamiltonians. Illustrated by specific experimental case studies, the concepts of surface tension, line tension, and in particular the effective interface potential are introduced and explained. The generic wetting and dewetting equilibrium phase diagram is given and equilibria, metastable and unstable thin film states are discussed and their quantitative description derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chap. 4 for an explicit mathematical expression for the interfacial curvature.

  2. 2.

    With respect to the usual notational difficulty, note that film height h should not be confused with Planck’s (reduced) constant ħ.

  3. 3.

    Note that for one-dimensional profiles, h 0=h min . This is not true for d>1 due to the appearance of a ‘friction’-term in the ODE governing the interface profile: see the discussion in Sect. 2.5.

  4. 4.

    We will encounter this kind of matching procedure also in Part II of the book in the discussion of dynamic interface profiles.

  5. 5.

    Note that the solution with the ‘+’-sign corresponds indeed to a droplet solution in the same dimension, d=d 0(m): (Bausch et al. 1994).

References

  • Bauer, C., Dietrich, S.: Quantitative study of laterally inhomogeneous wetting films. Eur. Phys. J. B 10, 767–779 (1999)

    Article  ADS  Google Scholar 

  • Bausch, R., Blossey, R.: Critical droplets in first-order wetting transitions. Europhys. Lett. 14, 125–129 (1991)

    Article  ADS  Google Scholar 

  • Bausch, R., Blossey, R.: Critical droplets at a wall near a first-order wetting transition. Phys. Rev. E 48, 1131–1135 (1993)

    Article  ADS  Google Scholar 

  • Bausch, R., Blossey, R., Burschka, M.A.: Critical nuclei for wetting and dewetting. J. Phys. A 27, A1405-A1406 (1994)

    Article  ADS  Google Scholar 

  • Bausch, R., Blossey, R.: Lifetime of undercooled wetting layers. Phys. Rev. E 50, R1759–R1761 (1994)

    Article  ADS  Google Scholar 

  • Berestycki, H., Lions, P.L., Peletier, L.A.: An O.D.E. approach to the existence of positive solutions for semi-linear problems. Indiana Univ. Math. J. 30, 141–157 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Blossey, R.: Nucleation at first-order wetting transitions. Int. J. Mod. Phys. B 9, 3489–3525 (1995)

    Article  ADS  Google Scholar 

  • Blossey, R., Oligschleger, C.: First-order wetting transitions under gravity. J. Colloid Interface Sci. 209, 442–444 (1999)

    Article  Google Scholar 

  • Brochard-Wyart, F., Daillant, J.: Drying of solids wetted by thin liquid films. Can. J. Phys. 68, 1084–1088 (1989)

    ADS  Google Scholar 

  • Brochard-Wyart, F., di Meglio, J.-M., Quéré, D., de Gennes, P.G.: Spreading of nonvolatile liquids in a continuum picture. Langmuir 91, 335–338 (1991)

    Article  Google Scholar 

  • Cahn, J.W.: Critical point wetting. J. Chem. Phys. 66, 3667–3672 (1977)

    Article  ADS  Google Scholar 

  • Coleman, S.: In: Aspects of Symmetry: The Uses of Instantons. Cambridge University Press, Cambridge (1985)

    Chapter  Google Scholar 

  • de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)

    Article  ADS  Google Scholar 

  • Dobbs, H.T., Indekeu, J.O.: Line tension at wetting: interface displacement model beyond the squared-gradient approximation. Physica A 201, 457–481 (1993)

    Article  ADS  Google Scholar 

  • Dobbs, H.: The modified Young’s equation for the contact angle of a small sessile drop from an interface displacement model. Int. J. Mod. Phys. B 13, 3255–3259 (1999a)

    Article  ADS  Google Scholar 

  • Dobbs, H.: The elasticity of a contact line. Physics A 271, 36–47 (1999b)

    Article  ADS  Google Scholar 

  • Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • Evans, R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979)

    Article  ADS  Google Scholar 

  • Foltin, G., Bausch, R., Blossey, R.: Critical holes in undercooled wetting layers. J. Phys. A 30, 2937–2946 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fradin, C., Braslau, A., Luzet, D., Smilgies, D., Alba, M., Boudet, N., Mecke, K., Daillant, J.: Reduction in the surface energy of liquid interfaces at short length scales. Nature 403, 871–874 (2000)

    Article  ADS  Google Scholar 

  • Herminghaus, S., Fery, A., Schlagowski, S., Jacobs, K., Seemann, R., Gau, H., Mönch, W., Pompe, T.: Liquid microstructures at solid surfaces. J. Phys., Condens. Matter 11, A57–A74 (1999)

    Article  Google Scholar 

  • Herminghaus, S., Brochard, F.: Dewetting through nucleation. C. R. Phys. 7, 1073–1081 (2006). Correction: C. R. Phys. 8, 86 (2007)

    ADS  Google Scholar 

  • Israelachvili, J.: Interfacial and Surface Forces, 2nd edn. Academic Press, London (1992)

    Google Scholar 

  • Joanny, J.F., de Gennes, P.G.: Nucleation under conditions of complete wetting. C. R. Acad. Sci. 303, 337–340 (1984)

    Google Scholar 

  • Mecke, K.R., Dietrich, S.: Effective Hamiltonian for liquid-vapor interfaces. Phys. Rev. E 59, 6766–6784 (1999)

    Article  ADS  Google Scholar 

  • Nakanishi, H., Fischer, M.E.: Multicriticality of wetting, prewetting, and surface transitions. Phys. Rev. Lett. 49, 1565–1568 (1982)

    Article  ADS  Google Scholar 

  • Pompe, T., Herminghaus, S.: Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett. 85, 1930–1933 (2000)

    Article  ADS  Google Scholar 

  • Schick, M., Taborek, P.: Anomalous nucleation at first-order wetting transitions. Phys. Rev. B 46, 7312–7314 (1992)

    Article  ADS  Google Scholar 

  • Seemann, R., Jacobs, K., Blossey, R.: Polystyrene nanodroplets. J. Phys., Condens. Matter 13, 4915–4923 (2001a)

    Article  ADS  Google Scholar 

  • Vrij, A.: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23–33 (1966)

    Article  Google Scholar 

  • Weijs, J.H., Marchand, A., Andreotti, B., Lohse, D., Snoeijer, J.H.: Origin of line tension for a Lennard-Jones nanodroplet. Phys. Fluids 23, 022001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Blossey .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blossey, R. (2012). Statistical Mechanics of Thin Films. In: Thin Liquid Films. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4455-4_2

Download citation

Publish with us

Policies and ethics