Advertisement

Plant Accumulation of Sulfur’s Sister Element Selenium – Potential Applications and Ecological Implications

  • Elizabeth A. H. Pilon-Smits
Conference paper
Part of the Proceedings of the International Plant Sulfur Workshop book series (PIPSW, volume 1)

Abstract

Selenium (Se) is an essential nutrient for many organisms including humans, but is also toxic at higher levels. Both Se deficiency and Se toxicity are problems worldwide. Although Se has not been shown to be essential for higher plants, it is considered a beneficial element, providing enhanced antioxidant activity. Selenium is chemically similar to sulfur (S) and readily taken up and assimilated via sulfur (S) transporters and enzymes. Thus, Se can replace S in many S compounds, including volatile forms. Some plants native to Se-rich soils can hyperaccumulate Se to levels around 1% of plant dry weight. They grow poorly without Se and thus appear to profit from Se physiologically. Selenium can also serve ecological functions as an elemental defense against pathogens and herbivores, and in elemental allelopathy. The ability of plants to (hyper)accumulate and volatilize Se may be used for phytoremediation of polluted soils or waters, and also to produce nutritionally enhanced crops. These applications will benefit from better insight into the mechanisms that control Se tolerance and accumulation in plants, and the potential ecological implications. This review gives an overview of our current knowledge of plant Se metabolism, including Se tolerance and hyperaccumulation mechanisms. It also summarizes what is known about ecological implications of plant Se (hyper)accumulation.

Keywords

Keshan Disease Wildtype Plant Double Transgenics Seleniferous Soil Selenocysteine Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

National Science Foundation grant # IOS-0817748 to EAHPS supported the writing of this manuscript.

References

  1. Anderson JW (1993) Selenium interactions in sulfur metabolism. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants – regulatory, agricultural and environmental aspects. SPB Academic Publishing, The Hague, pp 49–60Google Scholar
  2. Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777PubMedCrossRefGoogle Scholar
  3. Bañuelosn G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605CrossRefGoogle Scholar
  4. Boyd RS (2010) Heavy metal pollutants and chemical biology. Exploring new frontiers. J Chem Ecol 36:46–58PubMedCrossRefGoogle Scholar
  5. El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? New Phytol 191:120–131PubMedCrossRefGoogle Scholar
  6. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11PubMedCrossRefGoogle Scholar
  7. Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006a) Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192PubMedCrossRefGoogle Scholar
  8. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006b) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134PubMedCrossRefGoogle Scholar
  9. Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by orthoptera due to toxicity and deterrence. New Phytol 175:490–500PubMedCrossRefGoogle Scholar
  10. Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96:1075–1085PubMedCrossRefGoogle Scholar
  11. Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652PubMedCrossRefGoogle Scholar
  12. Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Pilon-Smits EAH (2008) Selenium hyperaccumulation affects plant arthropod load in the field. New Phytol 177:715–724PubMedCrossRefGoogle Scholar
  13. Hanson BR, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469CrossRefGoogle Scholar
  14. Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662CrossRefGoogle Scholar
  15. LeDuc DL, AbdelSamie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enchances selenium phytoremediation traits in Indian mustard. Environ Poll 144:70–76PubMedCrossRefGoogle Scholar
  16. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang C-Y, Tagmount A, de Souza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383PubMedCrossRefGoogle Scholar
  17. Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420PubMedCrossRefGoogle Scholar
  18. Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212PubMedCrossRefGoogle Scholar
  19. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274PubMedCrossRefGoogle Scholar
  20. Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5633–5640PubMedCrossRefGoogle Scholar
  21. Quinn CF, Freeman JF, Galeas ML, Klamper EM, Pilon-Smits EAH (2008) Selenium protects plants from prairie dog herbivory – implications for the functional significance and evolution of Se hyperaccumulation. Oecologia 155:267–275PubMedCrossRefGoogle Scholar
  22. Quinn CF, Freeman JL, Reynolds RJB, Lindblom SD, Cappa JJ, Marcus MA, Fakra SF, Pilon-Smits EAH (2010) Selenium hyperaccumulation protects plants from cell disruptor herbivores. BMC Ecol 10:19PubMedCrossRefGoogle Scholar
  23. Quinn CF, Wyant K, Wangeline AL, Shulman J, Galeas ML, Valdez JR, Paschke MW, Pilon-Smits EAH (2011a) Selenium hyperaccumulation increases leaf decomposition rate in a seleniferous habitat. Plant Soil 341:51–61CrossRefGoogle Scholar
  24. Quinn CF, Prins CN, Gross AM, Hantzis L, Reynolds RJB, Freeman JL, Yang SI, Covy PA, Bañuelos GS, Pickering IJ, Fakra SF, Marcus MA, Arathi HS, Pilon-Smits EAH (2011b) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737PubMedCrossRefGoogle Scholar
  25. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389PubMedCrossRefGoogle Scholar
  26. Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230PubMedCrossRefGoogle Scholar
  27. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432PubMedCrossRefGoogle Scholar
  28. Van Hoewyk D, Abdel-Ghany SE, Cohu C, Herbert S, Kugrens P, Pilon M, Pilon-Smits EAH (2007) The Arabidopsis cysteine desulfurase CpNifS is essential for maturation of iron-sulfur cluster proteins, photosynthesis, and chloroplast development. Proc Natl Acad Sci USA 104:5686–5691PubMedCrossRefGoogle Scholar
  29. Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253PubMedGoogle Scholar
  30. Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Selenium tolerance in rhizosphere fungi from Se hyperaccumulator and non-hyperaccumulator plants. Am J Bot 98:1139–1147PubMedCrossRefGoogle Scholar
  31. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118PubMedCrossRefGoogle Scholar
  32. Zhang L, Byrne PF, Pilon-Smits EAH (2006a) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42PubMedCrossRefGoogle Scholar
  33. Zhang L, Ackley AR, Pilon-Smits EAH (2006b) Variation in selenium tolerance and accumulation among nineteen Arabidopsis ecotypes. J Plant Physiol 164:327–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Biology DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations