Advertisement

The “Middle Wittgenstein” and Modern Mathematics

  • Sören Stenlund
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 27)

Abstract

It will be argued that the overcoming and avoiding of dogmatism is a decisive feature of the change in Wittgenstein’s thinking that takes place in the beginning of the 1930s when he starts to emphasise the autonomy of the grammar of language and to talk about grammatical pictures and language games as objects of comparison. By examining certain crucial features in this change in Wittgenstein’s thinking, it will be shown that he received decisive impulses and ideas from new developments in mathematics and natural science in the early twentieth century. These ideas include the axiomatisation of geometry and, in general, Hilbert’s axiomatic method, but also relativity theory and the so-called method of ideal elements. By drawing upon certain analogies rather than theory-constructions, these ideas affected not only his thinking about mathematics, but also his thinking about language and the nature of philosophy in general.

Keywords

Ideal Element Euclidean Geometry Axiomatic Method Mathematical Proposition Notational System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This article is a revised and abridged version of my original article Le “Wittgenstein-intermédiaire” et les mathématiques modernes to be published in the Canadian journal Philosophiques. The article appears here by permission of the editors of Philosophiques. I am indebted to Kim-Erik Berts, Juliet Floyd and Kim Solin for helpful comments on an earlier version of this article.

References

  1. Barker, P. 1980. Hertz and Wittgenstein. Studies in History and Philosophy of Science 11: 243–56.CrossRefGoogle Scholar
  2. Baker, G. 1988. Wittgenstein, Frege and the Vienna circle. Oxford: Basil Blackwell.Google Scholar
  3. Benacerraf, P., and Putnam, H. (eds.). 1983. Philosophy of mathematics, selected readings, 2nd ed. Cambridge: Cambridge U.P.Google Scholar
  4. Corry, L. 2000. The empiricist roots of Hilbert’s axiomatic approach. In Proof theory: History and philosophical significance, ed. Vincent F. Henricks et al., 35–54. Dordrecht: Kluwer.Google Scholar
  5. Corry, L. 2006a. Axiomatics, empiricism, and Anschauung in Hilbert’s conception of geometry: Between arithmetic and general relativity. In The architecture of modern mathematics: Essays in history and philosophy, ed. J.J. Gray and J. Ferreirós, 155–176. Oxford: Oxford University Press.Google Scholar
  6. Corry, L. 2006b. The origin of Hilbert’s axiomatic method. In The genesis of general relativity, vol. 4. Theories of gravitation in the twilight of classical physics: The promise of mathematics and the dream of a unified theory, ed. Jürgen Renn et al., 139–236. New York: Springer.Google Scholar
  7. Detlefsen, M. 1993a The Kantian character of Hilbert’s formalism. In Proceedings of the 15th International Wittgenstein-Symposium, ed. J. Czermak, 195–205. Vienna: Verlag Hölder-Pichler-Temsky.Google Scholar
  8. Detlefsen, M. 1993b. Hilbert’s formalism. Hilbert, Revue Internationale de Philosophie 47: 285–304.Google Scholar
  9. Einstein, A. 1973. Ideas and opinions. London: Souvenir Press.Google Scholar
  10. Epple, M. 2003. The end of the science of quantity: Foundations of analysis, 1860–1910. In A history of analysis, ed. H.N. Jahnke, 291–323. Providence/London: American Mathematical Society/London Mathematical Society.Google Scholar
  11. Ewald, W. 1996. From Kant to Hilbert. Readings in the foundations of mathematics. Oxford: Oxford University Press.Google Scholar
  12. Frege, G. 1980. Philosophical and mathematical correspondence, ed. B. McGuinness. Chicago: University of Chicago Press.Google Scholar
  13. Gerrard, S. 1991. Wittgenstein’s philosophies of mathematics. Synthese 87: 125–142.CrossRefGoogle Scholar
  14. Gray, J.J. 2006. Modern mathematics as a cultural phenomenon. In The architecture of modern mathematics, ed. J. Ferreirós and J.J. Gray, 371–396. New York: Oxford University Press.Google Scholar
  15. Hertz, H. 1956. The principles of mechanics presented in a new form. New York: Dover. English translation of Die Prinzipen der Mechanik in neuem Zusammanhange dargestellt, Leipzig, 1894.Google Scholar
  16. Hilbert, D. 1902. Die Grundlagen der Geometrie. Trans. as the foundations of geometry, by E.J. Townsend. Chicago: The Open Court Publishing Company.Google Scholar
  17. Hilbert, D. 1918. Axiomatisches Denken. Mathematische Annalen 78: 405–415. English translation as “Axiomatic thought” in Ewald (1996).Google Scholar
  18. Hilbert, D. 1926. Über das Unendliche. Mathematische Annalen 95: 161–190. English translation as “On the infinite” in Benacerraf, P. and Putnam, H., (1983).Google Scholar
  19. Hilbert, D. 1930. Naturerkennen und Logik In Hilbert: Gesammelte Adhandlungen, ed. Dritter Band. New York: Chelsea Publishing Company, 1965. English translation as “Logic and the knowledge of nature” in Ewald (1996, 1157–1165).Google Scholar
  20. Hilmy, S.S. 1987. The later Wittgenstein, the emergence of a new philosophical method. Oxford: Basil Blackwell.Google Scholar
  21. Jahnke, H.N. 1993. Algebraic analysis in Germany, 1780–1840: Some mathematical and philosophical issues. Historia Mathematica 20: 265–284.CrossRefGoogle Scholar
  22. Jahnke, H.N. (ed.). 2003. A history of analysis. Providence: American Mathematical Society.Google Scholar
  23. Kjaergaard, P.C. 2002. Hertz’ and Wittgenstein’s philosophy of science. Journal for General Philosophy of Science 33: 121–149.CrossRefGoogle Scholar
  24. McGinn, M. 2006. Elucidating the tractatus, Wittgenstein’s early philosophy of logic & language. Oxford: Oxford University Press.Google Scholar
  25. Mehrtens, H. 1990. Moderne – Sprache – Mathematik: Eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt: Suhrkamp.Google Scholar
  26. Mülhölzer, F. 2005. “A mathematical proof must be surveyable” – What Wittgenstein meant by this and what it implies. Grazer Philosophische Studien 71: 57–86Google Scholar
  27. Mülhölzer, F. 2008. Wittgenstein und der Formalismus. In “Ein Netz von Normen”: Wittgenstein und die Mathematik, ed. M. Kroß, 107–148. Berlin: Parerga Verlag.Google Scholar
  28. Penco, C. 2010. The influence of Einstein on Wittgenstein’s philosophy. Philosophical Investigations 33: 360–379.CrossRefGoogle Scholar
  29. Visser, H. 1999. Boltzmann and Wittgenstein on how pictures became linguistic. Synthese 119: 135–156.CrossRefGoogle Scholar
  30. Wilson, A.D. 1989. Hertz, Boltzmann and Wittgenstein Reconsidered. Studies in History and Philosophy of Science 20: 245–263.CrossRefGoogle Scholar
  31. Wittgenstein, L. 1958a. [BB]: The Blue and Brown books: Preliminary studies for the ‘philosophical investigations’, ed. R. Rhees. Oxford: Blackwell.Google Scholar
  32. Wittgenstein, L. 1958b. [PI]: Philosophical investigations, ed.G.E.M. Anscombe and R. Rhees, 2nd ed. Trans. G.E.M. Anscombe. Oxford: Blackwell.Google Scholar
  33. Wittgenstein, L. 1969. [TLP]: Tractatus Logico-philosophicus. Trans. D.F. Pears and B.F. McGuinnes. London: Routledge & Kegan Paul.Google Scholar
  34. Wittgenstein, L. 1974. [PG]: Philosophical grammar, ed. R. Rhees. Trans. A.J.P. Kenny. Oxford: Blackwell.Google Scholar
  35. Wittgenstein, L. 1975. [PR]: Philosophical remarks, ed.R. Rhees, 2nd ed. Trans. R. Hargreaves and R. White. Oxford: Blackwell.Google Scholar
  36. Wittgenstein, L. 1976. [LFM]: Wittgenstein’s lectures on the foundations of mathematics Cambridge, 1939, ed. Cora Diamond. Hassocks, Sussex: The Harvester Press, Ltd.Google Scholar
  37. Wittgenstein, L. 1978. [RFM]: Remarks on the foundations of mathematics, ed. G.H. von Wright, R. Rhees and G.E.M. Anscombe, 3rd ed. Trans. G.E.M. Anscombe. Oxford: Blackwell.Google Scholar
  38. Wittgenstein, L. 1979a. [AL]: Wittgenstein’s lectures, Cambridge, 1932–1935: From the notes of Alice Ambrose and Margaret Macdonald, ed. Alice Ambrose. Chicago: University of Chicago Press.Google Scholar
  39. Wittgenstein, L. 1979b. [WVC]: Ludvig Wittgenstein and the Wienna circle: Conversations recorded by Friedrich Waismann, ed. B.F. McGuiness. Trans. J. Schulte and B. McGuiness. Oxford: Blackwell.Google Scholar
  40. Wittgenstein, L. 1980a. [DL]: Wittgenstein’s lectures, Cambridge 1930–1932, from the notes of J. King and D. Lee, ed. D. Lee. Oxford: Blackwell.Google Scholar
  41. Wittgenstein, L. 1980b. [RPP I]: Remarks on the philosophy of psychology, vol. I, ed. G.E.M. Anscombe and G.H. von Wright. Trans. G.E.M. Anscombe. Oxford: Blackwell.Google Scholar
  42. Wittgenstein, L. 1998. [CV]: Culture and value, ed. G.H. von Wright. Trans. Peter Winch. Oxford: Blackwell,.Google Scholar
  43. Wittgenstein, L. 2003. [PPO]: Ludwig Wittgenstein, public and private occasions, ed. J.C. Klagge and A. Nordmann. Oxford: Rowman & Littlefield Publishers.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUppsala UniversityUppsalaSweden

Personalised recommendations