Magnetite Minerals in the Human Brain: What Is Their Role?



Although it has long been known that magnetite (Fe3O4) can be formed biochemically by bacteria, protists, and a variety of living organisms, it is only in the past 20 years that magnetite has discovered to be present in the human brain. Researchers have documented the presence of magnetite nanocrystals in the human brain using magnetometric methods and transmission electron microscopy.

To understand the mechanism behind the formation of magnetite nanocrystals in the human brain, we have chosen to take a transdisciplinary approach associating studies of magnetite biomineralization in other species and geochemical research.

Although the exact role of magnetite nanocrystals on human cerebral physiology has yet to be determined, we suspect that it plays a significant role in the nervous system.


Brain magnetic nanominerals Human nervous system Biomagnetite 


  1. Banaclocha MAM (2005) Magnetic storage of information in the human cerebral cortex: a hypothesis for memory. Int J Neurosci 115:329–347CrossRefGoogle Scholar
  2. Banaclocha MAM (2007) Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res Bull 73:21–27CrossRefGoogle Scholar
  3. Banaclocha MAM, Bokkon I, Banaclocha HM (2010) Long-term memory in brain magnetite. Med Hypotheses 74:254–257CrossRefGoogle Scholar
  4. Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229CrossRefGoogle Scholar
  5. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379CrossRefGoogle Scholar
  6. Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:3924–3929CrossRefGoogle Scholar
  7. Devouard B, Posfai M, Hua X, Bazylinski DA, Frakel RB, Busek PB (1998) Magnetite from magnetotactic bacteria: size distribution and twinning. Am Mineral 83:1387–1398Google Scholar
  8. Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5CrossRefGoogle Scholar
  9. Dobson J, Grassi P (1996) Magnetic properties of human hippocampal tissue-evaluation of artefact and contamination sources. Brain Res Bull 39:255–259CrossRefGoogle Scholar
  10. Faivre D, Zuddas P (2006) An integrated approach to determine the origin of magnetite nanoparticles. Earth Planet Sci Lett 243:53–60CrossRefGoogle Scholar
  11. Faivre D, Zuddas P (2007) Mineralogical and isotopic properties of biogenic nanocrystalline magnetites. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  12. Faivre D, Menguy N, Guyot F, Lopez O, Zuddas P (2005) Morphology of nanomagnetite crystals: implications for formation conditions. Am Mineral 90:1793–1800CrossRefGoogle Scholar
  13. Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum Press, New YorkCrossRefGoogle Scholar
  14. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefGoogle Scholar
  15. Hautot D, Pankhurst QA, Khan N, Dobson J (2007) Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. Proc R Soc Lond B 207(Suppl):1–5Google Scholar
  16. Hedges RW (1985) Inheritance of magnetosome polarity in magnetotropic bacteria. J Theor Biol 112:607–608CrossRefGoogle Scholar
  17. Ingber L (1984) Statistical mechanics of neocortical interactions deviation of short-term memory capacity. Phys Rev A 29:3346–3358CrossRefGoogle Scholar
  18. Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assemblage in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224CrossRefGoogle Scholar
  19. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687CrossRefGoogle Scholar
  20. Kobayashi A, Yamamoto N, Kirschvink J (1997) Studies of inorganic crystals in biological tissue: magnetite in human tumor. J Jpn Soc Powder Powder Metall 44:294–300CrossRefGoogle Scholar
  21. Komeili A, Li Z, Newmann DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245CrossRefGoogle Scholar
  22. MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823CrossRefGoogle Scholar
  23. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  24. Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598CrossRefGoogle Scholar
  25. Nanney DL (1985) Heredity without genes: ciliate explorations of clonal heredity. Trends Genet 1:295–298CrossRefGoogle Scholar
  26. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in a magnetotactic bacteria. Nature 440:110–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht. 2013

Authors and Affiliations

  1. 1.Institut des Sciences de la Terre de ParisUniversité Pierre et Marie Curie – Paris SorbonneParisFrance
  2. 2.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Centre de Neuroscience CognitiveCNRS Université Claude Bernard Lyon1Bron CedexFrance

Personalised recommendations