Skip to main content

Geochemistry and Biochemistry: Insights into the Fate and Transport of Pt-Based Chemotherapy Drugs

  • Chapter
  • First Online:
Medical Geochemistry

Abstract

Though some heavy metals, such as Pt, are considered toxic to humans, their toxic effects can be positively leveraged to treat diseases such as cancer. The use of Pt-based chemotherapies is, unfortunately, linked to severe side effects some occurring many years after treatment (late effects). Through the lens of geochemistry, it is possible to assess these late effects and associated biochemical interactions with other metals. This approach also presents a potential intervention/detection strategy for early detection and possible prevention of late effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Areberg J, Björkman S, Einarsson L, Frankenberg B, Lundqvist H et al (1999) Gamma camera imaging of platinum in tumours and tissues of patients after administration of 191Pt-cisplatin. Acta Oncol 38:221–228

    Article  Google Scholar 

  • Aull JL, Allen RL, Bapat AR, Daron HH, Friedman ME et al (1979) The effects of platinum complexes on seven enzymes. Biochim Biophys Acta 571:352–358

    Article  Google Scholar 

  • Barnham KJ, Djuran MI, Murdoch PS, Ranford JD, Sadler PJ (1996) Ring-opened adducts of the anticancer drug carboplatin with sulfur amino acids. Inorg Chem 35:1065–1072

    Article  Google Scholar 

  • Berger CC, Bokemeyer C, Schuppert F, Schmoll HJ (1996) Endocrinological late effects after chemotherapy for testicular cancer. Br J Cancer 73:1108–1114

    Article  Google Scholar 

  • Bokemeyer C (1998) Current trends in chemotherapy for metastatic nonseminomatous testicular germ cell tumors. Oncology 55:177–188

    Article  Google Scholar 

  • Bokemeyer C, Schmoll HJ (1995) Treatment of testicular cancer and the development of secondary malignancies. J Clin Oncol 13:283–292

    Google Scholar 

  • Brouwers EEM, Tibben MM, Pluim D, Rosing H, Boot H et al (2008a) Inductively coupled plasma mass spectrometric analysis of the total amount of platinum in DNA extracts from peripheral blood mononuclear cells and tissue from patients treated with cisplatin. Anal Bioanal Chem 391:577–585

    Article  Google Scholar 

  • Brouwers EEM, Huitema ADR, Beijnen JH, Schellens JHM (2008b) Long-term platinum retention after treatment with cisplatin and oxaliplatin. BMC Clin Pharmacol 8:1–10

    Article  Google Scholar 

  • Carrato A, Gallego J, Diaz-Rubio E (2002) Oxaliplatin: results in colorectal carcinoma. Crit Rev Oncol Hematol 44:29–44

    Article  Google Scholar 

  • Centerwall CR, Tacka KA, Kerwood DJ, Goodisman J, Toms BB et al (2006) Modification and uptake of a cisplatin carbonato complex by jurkat cells. Mol Pharmacol 70:348–355

    Google Scholar 

  • Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Campbell ME, Hauschka PV, Hannigan RE (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1(6):479–488. doi:10.1039/b905145g

    Article  Google Scholar 

  • DHHS (2000) Tenth report on carcinogenesis. National Toxicology Program, Research Triangle Park, pp III 42–III 44

    Google Scholar 

  • El-Khateeb M, Appleton TG, Gahan LR, Charles BG, Berners-Price SJ et al (1999) Reactions of cisplatin hydrolytes with methionine, cysteine, and plasma ultrafiltrate studied by a combination of HPLC and NMR techniques. J Inorg Biochem 77:13–21

    Article  Google Scholar 

  • Fossa SD, Stenning SP, Gerl A, Horwich A, Clark PI et al (1999) Prognostic factors in patients progressing after cisplatin based chemotherapy for malignant non-seminomatous germ cell tumours. Br J Cancer 80:1392–1399

    Article  Google Scholar 

  • Gabano E, Ravera M, Colangelo D, Osella D (2007) Bioinorganic chemistry: the study of the fate of platinum-based antitumour drugs. Curr Chem Biol 1:278–289

    Google Scholar 

  • Galanski M, Keppler BK (2007) Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anticancer Agents Med Chem 7:55–73

    Article  Google Scholar 

  • Garcia-Vargas GG, Del Razo LM, Cebrian ME, Albores A, Ostrosky-Wegman P et al (1994) Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Hum Exp Toxicol 13:839–847

    Article  Google Scholar 

  • Gerl A, Schierl R (2000) Urinary excretion of platinum in chemotherapy-treated long-term survivors of testicular cancer. Acta Onocol 39:519–522

    Article  Google Scholar 

  • Getaz EP, Beckley S, Fitzpatrick J, Dozier A (1980) Cis-platin induced hemolysis. N Engl J Med 302:334–335

    Article  Google Scholar 

  • Gietema JA, Meinardi MT, Messerschmidt J, Gelevert T, Alt F et al (2000) Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 355:1075–1076

    Article  Google Scholar 

  • Gonzalez C, Villasanta U (1982) Life-threatening hypocalcemia and hypomagnesia associated with cisplatin chemotherapy. Obstet Gynecol 59:732–734

    Google Scholar 

  • Hagrman D, Goodisman J, Dabrowiak JC, Souid A-K (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Dispos 31:916–923

    Article  Google Scholar 

  • Hartmann JT (2002) Long-term effects of platin and anthracycline derivatives and possible prevention strategies. Front Radiat Ther Oncol 37:92–100, Karger

    Article  Google Scholar 

  • Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83:866–869

    Article  Google Scholar 

  • Heudi O, Cailleux A, Allain P (1998) Kinetic studies of the reactivity between cisplatin and its monoaquo species with methionine. J Inorg Biochem 71:61–69

    Article  Google Scholar 

  • Heydorn K, Rietz B, Krarup-Hansen A (1998) Distribution of platinum in patients treated with cisplatin determined by radiochemical neutron activation analysis. J Trace Elem Exp Med 11:37–43

    Article  Google Scholar 

  • Huang D, Zhang Y, Qi Y, Chen C, Ji W (2008) Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated k562 cell proliferation. Toxicol Lett 179:43–47

    Article  Google Scholar 

  • Hussain SA, Ma YT, Cullen MH (2008) Management of metastatic germ cell tumors. Expert Rev Anticancer Ther 8:771–784

    Article  Google Scholar 

  • Jakob A, Kollmannsberger C, Kanz L, Bokemeyer C (1998) Late toxicity after treatment for testicular germ cell cancer. Urologe A 37:635–647

    Article  Google Scholar 

  • Joseph L, Ryan M, Vasu DA (2008) Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J Appl Toxicol 28:175–182

    Article  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  Google Scholar 

  • Kintzel PE (2001) Anticancer drug-induced kidney disorders – incidence, prevention and management. Drug Saf 24:19–38

    Article  Google Scholar 

  • Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(ii) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(ii) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979

    Google Scholar 

  • Kollmannsberger C, Kuzcyk M, Mayer F, Hartmann JT, Kanz L et al (1999) Late toxicity following curative treatment of testicular cancer. Semin Surg Oncol 17:275–281

    Article  Google Scholar 

  • Lanvers-Kaminsky C, Krefeld B, Dinnesen AG, Deuster D, Seifert E et al (2006) Continuous or repeated prolonged cisplatin infusions in children: a prospective study on ototoxicity, platinum concentrations, and standard serum parameters. Pediatr Blood Cancer 47:183–193

    Article  Google Scholar 

  • Leonard DGB, Travis LB, Addya K, Dores GM, Holowaty EJ et al (2002) P53 mutations in leukemia and myelodysplastic syndrome after ovarian cancer. Clin Cancer Res 8:973–985

    Google Scholar 

  • Levi JA, Aroney RS, Dalley DN (1981) Haemolytic anaemia after cisplatin treatment. Br Med J 282:2003–2004

    Article  Google Scholar 

  • Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470

    Article  Google Scholar 

  • Lykissa ED, Maharaj SVM (2006) Total platinum concentration and platinum oxidation states in body fluids, tissue, and explants from women exposed to silicone and saline breast implants by IC-ICPMS. Anal Chem 78:2925–2933

    Article  Google Scholar 

  • Maduro JH, Pras E, Willemse PHB, de Vries EGE (2003) Acute and long-term toxicity following radiotherapy alone or in combination with chemotherapy for locally advanced cervical cancer. Cancer Treat Rev 29:471–488

    Article  Google Scholar 

  • Mandal R, Jiang GF, Li XF (2003) Direct evidence for co-binding of cisplatin and cadmium to a native zinc- and cadmium-containing metallothionein. Appl Organomet Chem 17:675–681

    Article  Google Scholar 

  • McLaughlin MP, Darrah TH, Holland PL (2011) Palladium and platinum derivatives of a blue copper protein. J Inorg Chem 50:11294–11296. doi:dx.doi.org/10.1021/ic2017648

    Google Scholar 

  • Najarian T, Miller A, Zimelman AP, Hong WK (1981) Hematologic effect of cisplatinum-bleomycin therapy. Oncology 38:195–197

    Article  Google Scholar 

  • Pasha Q, Malik SA, Shah MH (2008) Statistical analysis of trace metals in the plasma of cancer patients versus controls. J Hazard Mater 153:1215–1221

    Article  Google Scholar 

  • Pattanaik A, Bachowski G, Laib J, Lemkuil D, Shaw CF et al (1992) Properties of the reaction of cis-dichlorodiammineplatinum(ii) with metallothionein. J Biol Chem 267:16121–16128

    Google Scholar 

  • Polycarpe E, Arnould L, Schmitt E, Duvillard L, Ferrant E et al (2004) Low urine osmolarity as a determinant of cisplatin-induced nephrotoxicity. Int J Cancer 111:131–137

    Article  Google Scholar 

  • Rademaker-Lakhai JM, Crul M, Zuur L, Baas P, Beijnen JH et al (2006) Relationship between cisplatin administration and the development of ototoxicity. J Clin Oncol 24:918–924

    Article  Google Scholar 

  • Reedijk J (1999) Why does cisplatin reach guanine-n7 with competing s-donor ligands available in the cell? Chem Rev 99:2499–2510

    Article  Google Scholar 

  • Reedijk J (2009) Platinum anticancer coordination compounds: study of DNA binding inspires new drug design. Eur J Inorg Chem 10:1303–1312

    Article  Google Scholar 

  • Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J (1987) Cisplatin nephrotoxicity: insights into mechanism. Int J Androl 10:325–346

    Article  Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37:582–593

    Article  Google Scholar 

  • Sprauten M, Darrah TH, Peterson DR, Campbell ME, Hannigan RE et al (2012) Impact of long-term serum platinum concentrations on neuro- and ototoxicity in cisplatin-treated survivors of testicular cancer. J Clin Oncol 30:300–307

    Article  Google Scholar 

  • Stewart DJ, Mikhael NZ, Nanji AA, Nair RC, Kacew S et al (1985) Renal and hepatic concentrations of platinum: relationship to cisplatin time, dose, and nephrotoxicity. J Clin Oncol 3:1251–1256

    Google Scholar 

  • Sun L, Chai Y, Hannigan R, Bhogaraju VK, Machaca K (2007) Zinc regulates the ability of Cdc25C to activate MPF/cdk1. J Cell Physiol 213:98–104

    Article  Google Scholar 

  • Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1(4):280–291

    Article  Google Scholar 

  • Tothill P, Klys HS, Matheson LM, McKay K, Smyth JF (1992) The long-term retention of platinum in human tissues following the administration of cisplatin or carboplatin for cancer therapy. Eur J Cancer 28:1358–1361

    Article  Google Scholar 

  • Travis LB, Holowaty EJ, Bergfeldt K, Lynch CF, Kohler BA et al (1999) Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N Engl J Med 340:351–357

    Article  Google Scholar 

  • Travis LB, Beard C, Allan JM, Dahl AA, Feldman DR et al (2010) Testicular cancer survivorship: research strategies and recommendations. J Natl Cancer Inst 102:1114–1130

    Article  Google Scholar 

  • Uozumi J, Ueda T, Yasumasu T, Koikawa Y, Naito S et al (1993) Platinum accumulation in the kidney and liver following chemotherapy with cisplatin in humans. Int Urol Nephrol 25:215–220

    Google Scholar 

  • Vernie LN, Goeij JJMD, Zegers C, Vries MD, Baldew GS et al (1988) Cisplatin-induced changes of selenium levels and glutathione peroxidase activities in blood of testis tumor patients. Cancer Lett 40:83–91

    Article  Google Scholar 

  • Woods JS, Bowers MA, Davis HA (1991) Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: Studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Toxicol Appl Pharmacol 110:464–476

    Article  Google Scholar 

  • Zhang B, Tang W (1994) Kinetics of the reaction of platinum(ii) complexes with metallothionein. J Inorg Biochem 56:143–153

    Article  Google Scholar 

  • Zhitkovich A (2004) Importance of chromium DNA adducts in mutagenicity and toxicity of chromium(vi). Chem Res Toxicol 18:3–11

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs. Travis, Beard, and Fossa for providing the samples for this study and additional data regarding chemotherapy treatments. This work was funded, in part, by NIH 5U56CA118635 (Hannigan and Darrah) and S-E Norway Regional Health Authority #39247 (Sprauten). We also thank Ellen Campbell and Jenny Geldart for assistance in the lab and for Princess for being such a champion instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn E. Hannigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Hannigan, R.E., Darrah, T.H. (2013). Geochemistry and Biochemistry: Insights into the Fate and Transport of Pt-Based Chemotherapy Drugs. In: Censi, P., Darrah, T., Erel, Y. (eds) Medical Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4372-4_2

Download citation

Publish with us

Policies and ethics